HIV Mutation Detail Information

Virus Mutation HIV Mutation I47A


Basic Characteristics of Mutations
Mutation Site I47A
Mutation Site Sentence The 23 primary PI RAMs were D30N, V32I, M46I/L, I47A/V, G48V, I50 L/V, I54 L/M, Q58E, T74P, L76V, V82A/F/L/S/T, N83D, I84V, N88S, and L90M.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PR
Standardized Encoding Gene gag-pol  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment PIs
Location USA
Literature Information
PMID 30148406
Title Prevalence of Darunavir Resistance in the United States from 2010 to 2017
Author Brown K,Stewart L,Whitcomb JM,Yang D,Nettles RE,Lathouwers E
Journal AIDS research and human retroviruses
Journal Info 2018 Dec;34(12):1036-1043
Abstract The emergence and transmission of antiretroviral drug resistance have been and remain a concern among people living with human immunodeficiency virus (HIV)-1 infection. The protease inhibitor (PI) darunavir has been approved for use in the United States for more than 10 years and has demonstrated a high barrier to resistance. Previous analyses identified significant reductions in the prevalence of samples with darunavir resistance-associated mutations (RAMs) and with phenotypic resistance to darunavir and other PIs between 2006 and 2012. This analysis extends those findings by evaluating darunavir and PI resistance among clinical samples submitted for routine drug resistance testing (combined genotyping and phenotyping) in the United States from 2010 to 2017. Frequencies of 11 darunavir and 23 primary PI RAMs, and phenotypic susceptibility, were assessed yearly among all samples and in a subset of samples with distinct phenotypic resistance to one or more PIs. Among all samples (N = 60,760), the proportion with 0 darunavir RAMs was 91.7% in 2010 and 95.8% in 2017. The proportions of all samples with phenotypic susceptibility to darunavir, atazanavir, and lopinavir were, respectively, 97.4%, 94.2%, and 94.7% in 2010 and 98.6%, 97.7%, and 97.5% in 2017. Among the 4,799 samples with phenotypic resistance to one or more PIs, the proportions with phenotypic susceptibility to darunavir, atazanavir, and lopinavir were, respectively, 73.3%, 41.5%, and 46.0% in 2010 and 70.7%, 53.7%, and 48.8% in 2017. The prevalence of darunavir RAMs among commercially tested HIV-1 samples remained low and generally stable from 2010 to 2017, and high proportions showed phenotypic darunavir susceptibility.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.