HIV Mutation Detail Information

Virus Mutation HIV Mutation I50L


Basic Characteristics of Mutations
Mutation Site I50L
Mutation Site Sentence Considering the specific I50L mutations to ATV, the proportion is not statistically different in HIV-1 C sequences (6.9%, 6/87 vs. B 4.4%, 76/1216, p = 0.27) overall as well as among cases with documented exposure to atazanavir (12.5%, 3/24 vs. 8.6%, 26/302, p = 0.77).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PR
Standardized Encoding Gene gag-pol  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections     Acquired Immunodeficiency Syndrome    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment PIs
Location Brazil
Literature Information
PMID 31574109
Title Major drug resistance mutations to HIV-1 protease inhibitors (PI) among patients exposed to PI class failing antiretroviral therapy in Sao Paulo State, Brazil
Author Soldi GFR,Ribeiro IC,Ahagon CM,Coelho LPO,Cabral GB,Lopes GISL,Ferreira JLP,Brigido LFM
Journal PloS one
Journal Info 2019 Oct 1;14(10):e0223210
Abstract BACKGROUND: Protease inhibitors (PI) are especially important in salvage therapy. Previous treatment failure with a PI containing regimen may elicit resistance mutations, reducing PI susceptibility and limiting treatment options. The aim of this study was to describe major PI mutations among patients exposed to at least one PI to evaluate predictors of mutation emergence and the impact of subtypes on resistance. METHODOLOGY: Partial HIV-1 pol sequences (Sanger Sequencing) from patients exposed to PI with virological failure were genotyped from January 2014 to December 2017. Drug resistance mutations (DRM), antiretroviral susceptibility (GSS) and subtypes, along clinical and laboratory parameters, were evaluated using logistic regression to access the predictors of mutation emergence. RESULTS: In 27.5% (466/1696) of the cases at least one major PI mutations was identified, most commonly M46 (14.7%), V82 (13.8%) and I54 (13.3%). Mutations to NRTI and NNRTI were observed in 69.6% and 59.9%, respectively, of the 1696 sequences. Full activity to darunavir was predicted in 88% (1496/1696), but was only 57% among those with at least one PI-DRM. Subtype C sequences had less major PI-DRMs (10%, 9/87) compared to B (28%, 338/1216) or F (35%, 58/168) (p <0.001) but adjusted analysis suggested that this association is not independent from a shorter treatment time and fewer regimens (OR 0.59, Confidence Interval 95: 0.2-2.5, p = 0.48). Subtype F, together with NRTI mutations and longer time on treatment was associated to presence of PI-DRM, to a lower darunavir GSS and to mutations at codon I50. CONCLUSIONS: Among patients with PI-DRM, full activity to darunavir was compromised in almost half of the cases and efforts to detect failure at earlier time are warranted, particularly for HIV-1 subtype F that showed association to the emergence of resistance, with potential impact in protease inhibitors sequencing. Furthermore, NRTI mutations may serve as an indicative of sufficient adherence to allow PI-DRM emergence.
Sequence Data MN235946-MN237641
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.