EBOV Mutation Detail Information

Virus Mutation EBOV Mutation I544A


Basic Characteristics of Mutations
Mutation Site I544A
Mutation Site Sentence The nuclear magnetic resonance (NMR) structures of the I544A and L529A I544A mutants in lipid environments showed significant disruption of a three-residue scaffold that is required for the formation of a consolidated fusogenic hydrophobic surface at the tip of the FL. Biophysical experiments and molecular simulation revealed the position of the wild-type (WT) FL in membranes and showed the inability of the inactive double mutant to reach this position.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region GP
Standardized Encoding Gene GP
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24696482
Title Ebolavirus entry requires a compact hydrophobic fist at the tip of the fusion loop
Author Gregory SM,Larsson P,Nelson EA,Kasson PM,White JM,Tamm LK
Journal Journal of virology
Journal Info 2014 Jun;88(12):6636-49
Abstract Ebolavirus is an enveloped virus causing severe hemorrhagic fever. Its surface glycoproteins undergo proteolytic cleavage and rearrangements to permit membrane fusion and cell entry. Here we focus on the glycoprotein's internal fusion loop (FL), critical for low-pH-triggered fusion in the endosome. Alanine mutations at L529 and I544 and particularly the L529 I544 double mutation compromised viral entry and fusion. The nuclear magnetic resonance (NMR) structures of the I544A and L529A I544A mutants in lipid environments showed significant disruption of a three-residue scaffold that is required for the formation of a consolidated fusogenic hydrophobic surface at the tip of the FL. Biophysical experiments and molecular simulation revealed the position of the wild-type (WT) FL in membranes and showed the inability of the inactive double mutant to reach this position. Consolidation of hydrophobic residues at the tip of FLs may be a common requirement for internal FLs of class I, II, and III fusion proteins. IMPORTANCE: Many class I, II, and III viral fusion proteins bear fusion loops for target membrane insertion and fusion. We determined structures of the Ebolavirus fusion loop and found residues critical for forming a consolidated hydrophobic surface, membrane insertion, and viral entry.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.