|
Basic Characteristics of Mutations
|
|
Mutation Site
|
I84V |
|
Mutation Site Sentence
|
Table 3. Entrenchment of at least one primary DRM for each of the four drug classes in HIV-1: Table shows the percentage of drug-experienced sequences which contain at least one primary DRM, and the percentage of drug-experienced sequences which contain at least one primary DRM such that the DRM is entrenched by its respective background. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
PR |
|
Standardized Encoding Gene
|
gag-pol
|
|
Genotype/Subtype
|
HIV-1 B |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
HIV Infections
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
PIs |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
31591964
|
|
Title
|
Epistasis and entrenchment of drug resistance in HIV-1 subtype B
|
|
Author
|
Biswas A,Haldane A,Arnold E,Levy RM
|
|
Journal
|
eLife
|
|
Journal Info
|
2019 Oct 8;8:e50524
|
|
Abstract
|
The development of drug resistance in HIV is the result of primary mutations whose effects on viral fitness depend on the entire genetic background, a phenomenon called 'epistasis'. Based on protein sequences derived from drug-experienced patients in the Stanford HIV database, we use a co-evolutionary (Potts) Hamiltonian model to provide direct confirmation of epistasis involving many simultaneous mutations. Building on earlier work, we show that primary mutations leading to drug resistance can become highly favored (or entrenched) by the complex mutation patterns arising in response to drug therapy despite being disfavored in the wild-type background, and provide the first confirmation of entrenchment for all three drug-target proteins: protease, reverse transcriptase, and integrase; a comparative analysis reveals that NNRTI-induced mutations behave differently from the others. We further show that the likelihood of resistance mutations can vary widely in patient populations, and from the population average compared to specific molecular clones.
|
|
Sequence Data
|
AF324493.2;K03455.1
|