EBV Mutation Detail Information

Virus Mutation EBV Mutation K102I


Basic Characteristics of Mutations
Mutation Site K102I
Mutation Site Sentence PME-BGLF4-K102I was constructed by amplifying the entire coding sequence of BGLF4-K102I, in which the invariant lysine at position 102 was substituted with isoleucine, from pAcGHLT-BGLF4-K102I (Kato et al., 2003) and cloning the DNA fragments into pME18S.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region BGLF4
Standardized Encoding Gene BGLF4  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 19321754
Title Epstein-Barr virus protein kinase BGLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity
Author Asai R,Kato A,Kawaguchi Y
Journal The Journal of general virology
Journal Info 2009 Jul;90(Pt 7):1575-1581
Abstract BGLF4 is a serine/threonine protein kinase encoded by Epstein-Barr virus. One of the physiological substrates of BGLF4 is viral transactivator BZLF1. In the present study, it was demonstrated that alanine substitution of the serine residue at position 209 (S209A) in BZLF1 eliminated phosphorylation of the protein by BGLF4 in vitro. The S209A mutation in BZLF1, as well as a K102I mutation in BGLF4, which inactivated catalytic activity of the viral kinase, also inhibited formation of a stable BGLF4-BZLF1 complex and downregulation of BZLF1 autotransactivation activity mediated by BGLF4. These results indicate that formation of a stable complex of BGLF4-BZLF1 enables downregulation of BZLF1 autoregulation activity and it appears that BGLF4 phosphorylation of BZLF1 may be involved in these processes.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.