HIV Mutation Detail Information

Virus Mutation HIV Mutation K103N


Basic Characteristics of Mutations
Mutation Site K103N
Mutation Site Sentence One child who was receiving nevirapine had the NNRTI resistance mutation K103N detected 14 days after stopping treatment with nevirapine, but this child had a viral load of 700 copies/mL at day 0 (<50 copies/mL at the screening visit), and the K103N resistance mutation could also be detected in virus isolated from a stored sample taken at day 0.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment NNRTIs
Location European
Literature Information
PMID 18419497
Title Plasma drug concentrations and virologic evaluations after stopping treatment with nonnucleoside reverse-transcriptase inhibitors in HIV type 1-infected children
Author Cressey TR,Green H,Khoo S,Treluyer JM,Compagnucci A,Saidi Y,Lallemant M,Gibb DM,Burger DM
Journal Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
Journal Info 2008 May 15;46(10):1601-8
Abstract BACKGROUND: The optimum strategy for stopping treatment with drugs that have different half-lives in a combination regimen to minimize the risk of selecting drug-resistant viruses remains unknown. We evaluated drug concentrations in plasma, human immunodeficiency virus (HIV) load, and development of drug resistance after a planned treatment interruption of a nonnucleoside reverse-transcriptase inhibitor (NNRTI)-containing regimen in HIV type 1-infected children. METHODS: Children with viral loads <50 copies/mL and CD4 cell percentages > or =30% (for children aged 2-6 years) or CD4 cell percentages > or =25% and CD4 cell counts > or =500 cells/microL (for children aged 7-15 years) were randomized to either a planned treatment interruption or to continuous therapy. In the planned treatment interruption arm, either (1) treatment with nevirapine or efavirenz was stopped, and treatment with the remaining drugs was continued for 7-14 days, or (2) nevirapine or efavirenz were replaced by a protease inhibitor, and all drugs were stopped after 7-14 days. Sampling for determination of plasma drug concentrations, measurement of viral load, and drug resistance testing was scheduled at day 0, day 7 (drug concentrations only), day 14, and day 28 after interruption of treatment with an NNRTI. RESULTS: Treatment with an NNRTI was interrupted for 35 children (20 were receiving nevirapine, and 15 were receiving efavirenz). Median time from NNRTI cessation to stopping all drugs was 9 days (range, 6-15 days) for nevirapine and 14 days (range, 6-18 days) for efavirenz. At 7 days, 1 (5%) of 19 and 4 (50%) of 8 children had detectable nevirapine and efavirenz concentrations, respectively; efavirenz remained detectable in 3 (25%) of 12 children at 14 days. At 14 days, viral load was > or =50 copies/mL in 6 of 16 children interrupting treatment with nevirapine (range, 52-7000 copies/mL) and in 2 of 12 children interrupting treatment with efavirenz (range, 120-1600 copies/mL). No new NNRTI mutations were observed. CONCLUSIONS: In children with virological suppression who experienced interruption of treatment with an NNRTI, staggered or replacement stopping strategies for a median of 9 days for nevirapine and 14 days for efavirenz were not associated with the selection of NNRTI resistance mutations.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.