HIV Mutation Detail Information

Virus Mutation HIV Mutation K136K


Basic Characteristics of Mutations
Mutation Site K136K
Mutation Site Sentence The consensus sequences generated using the database-derived HIV-1 CRF02_AG sequences (n = 287) and cohort sequences (n = 20), identified 20 naturally occurring polymorphisms (NOPS): E11D,K14R, V31I, M50I, I72V, L74MVI, L101I, T112V, T124A, G134N, I135V, K136K/Q, V201I, T206S, T218I, L234I, A265V, R269K, S283G (Fig. 2).
Mutation Level Amino acid level
Mutation Type Synonymous substitution
Gene/Protein/Region IN
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1 CRF02_AG
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment INSTIs
Location Cameroon
Literature Information
PMID 33892628
Title Interaction analysis of statistically enriched mutations identified in Cameroon recombinant subtype CRF02_AG that can influence the development of Dolutegravir drug resistance mutations
Author Mikasi SG,Isaacs D,Chitongo R,Ikomey GM,Jacobs GB,Cloete R
Journal BMC infectious diseases
Journal Info 2021 Apr 23;21(1):379
Abstract BACKGROUND: The Integrase (IN) strand transfer inhibitor (INSTI), Dolutegravir (DTG), has been given the green light to form part of first-line combination antiretroviral therapy (cART) by the World Health Organization (WHO). DTG containing regimens have shown a high genetic barrier against HIV-1 isolates carrying specific resistance mutations when compared with other class of regimens. METHODS: We evaluated the HIV-1 CRF02_AG IN gene sequences from Cameroon for the presence of resistance-associated mutations (RAMs) against INSTIs and naturally occurring polymorphisms (NOPs), using study sequences (n = 20) and (n = 287) sequences data derived from HIV Los Alamos National Laboratory database. The possible impact of NOPs on protein structure caused by HIV-1 CRF02_AG variations was addressed within the context of a 3D model of the HIV-1 IN complex and interaction analysis was performed using PyMol to validate DTG binding to the Wild type and seven mutant structures. RESULTS: We observed 12.8% (37/287) sequences to contain RAMs, with only 1.0% (3/287) of the sequences having major INSTI RAMs: T66A, Q148H, R263K and N155H. Of these,11.8% (34/287) of the sequences contained five different IN accessory mutations; namely Q95K, T97A, G149A, E157Q and D232N. NOPs occurred at a frequency of 66% on the central core domain (CCD) position, 44% on the C-terminal domain (CTD) position and 35% of the N-terminal domain (NTD) position. The interaction analysis revealed that DTG bound to DNA, 2MG ions and DDE motif residues for T66A, T97A, Q148H, N155H and R263K comparable to the WT structure. Except for accessory mutant structure E157Q, only one MG contact was made with DTG, while DTG had no MG ion contacts and no DDE motif residue contacts for structure D232N. CONCLUSIONS: Our analysis indicated that all RAM's that resulted in a change in the number of interactions with encompassing residues does not affect DTG binding, while accessory mutations E157Q and D232N could affect DTG binding leading to possible DTG resistance. However, further experimental validation is required to validate the in silico findings of our study.
Sequence Data MN816445-MN816488
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.