DENV Mutation Detail Information

Virus Mutation DENV Mutation K141S


Basic Characteristics of Mutations
Mutation Site K141S
Mutation Site Sentence Residues from L138 to L149 and from L226 to L245 were also considerably conserved in all serotypes, while lysine141 mutated to serine in serotype 3.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS3
Standardized Encoding Gene NS3
Genotype/Subtype DENV-3
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24083095
Title Global consensus sequence development and analysis of dengue NS3 conserved domains
Author Ayub A,Ashfaq UA,Idrees S,Haque A
Journal BioResearch open access
Journal Info 2013 Oct;2(5):392-6
Abstract The dengue virus (DENV) genome encodes 10 different genes including the NS3 gene, which has a protease and helicase domain used in virus replication. This domain is a potential target for antiviral agents against dengue. Due to a high mutation rate, DENV is classified into four major serotypes (DENV1-DENV4). This study was designed to perform conservancy analysis of all four serotypes by drawing a consensus sequence for each serotype and then drawing a global consensus sequence to study conserved residues in all four serotypes. A total of 127 NS3 sequences belonging to all four serotypes were retrieved and aligned using multiple alignment feature of CLC Workbench and were subjected to phylogenetic tree construction. Conservancy analysis of NS3 revealed conserved peptides with active site residues that can be important in developing antiviral agents against dengue virus. Among conserved residues, residues G142, Ser144, and G145 (catalytic pocket residues), A219, D220, and D221 (divalent cations binding residues), and His56, Asp79, Ser144, 146 were highly conserved among all the serotypes. Residues from L138 to L149 and from L226 to L245 were also considerably conserved in all serotypes, while lysine141 mutated to serine in serotype 3. A total of 14 peptides from the conserved regions of DENV NS3 protein were identified, which may be helpful to develop peptide inhibitors. The DENV NS3 phylogenetic tree showed the evolutionary relationship among all four serotypes, and all serotypes of dengue were found to have evolved from the dengue 4 serotype. Because of its high variability, DENV has become a global health concern. It is important to study residues that are present in protease, helicase, the catalytic pocket Mg(2+) binding site, and the AAA domain. This study revealed peptides with active site residues that are highly conserved among all four serotypes. These regions of the NS3 sequence may be helpful in developing antiviral agents.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.