IV Mutation Detail Information

Virus Mutation IV Mutation K208R


Basic Characteristics of Mutations
Mutation Site K208R
Mutation Site Sentence In contrast, the virulent virus selected in the second adaptation experiment had a lysine-to-arginine change at position 208 in PB1 and a glutamate-to-glycine change at position 349 in PA.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PB1
Standardized Encoding Gene PB1
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 19403683
Title Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice
Author Rolling T,Koerner I,Zimmermann P,Holz K,Haller O,Staeheli P,Kochs G
Journal Journal of virology
Journal Info 2009 Jul;83(13):6673-80
Abstract High virulence of influenza virus A/Puerto Rico/8/34 in mice carrying the Mx1 resistance gene was recently shown to be determined by the viral surface proteins and the viral polymerase. Here, we demonstrated high-level polymerase activity in mammalian host cells but not avian host cells and investigated which mutations in the polymerase subunits PB1, PB2, and PA are critical for increased polymerase activity and high virus virulence. Mutational analyses demonstrated that an isoleucine-to-valine change at position 504 in PB2 was the most critical and strongly enhanced the activity of the reconstituted polymerase complex. An isoleucine-to-leucine change at position 550 in PA further contributed to increased polymerase activity and high virulence, whereas all other mutations in PB1, PB2, and PA were irrelevant. To determine whether this pattern of acquired mutations represents a preferred viral strategy to gain virulence, two independent new virus adaptation experiments were performed. Surprisingly, the conservative I504V change in PB2 evolved again and was the only mutation present in an aggressive virus variant selected during the first adaptation experiment. In contrast, the virulent virus selected in the second adaptation experiment had a lysine-to-arginine change at position 208 in PB1 and a glutamate-to-glycine change at position 349 in PA. These results demonstrate that a variety of minor amino acid changes in the viral polymerase can contribute to enhanced virulence of influenza A virus. Interestingly, all virulence-enhancing mutations that we identified in this study resulted in substantially increased viral polymerase activity.
Sequence Data EF190971-EF190978;EF190979-EF190986
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.