HIV Mutation Detail Information

Virus Mutation HIV Mutation K36A


Basic Characteristics of Mutations
Mutation Site K36A
Mutation Site Sentence Moreover, at least 2 mutants, R23A and K36A, were partially functional for both activities (but not for A3G degradation), further indicating a cause-and-effect relationship.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Vif
Standardized Encoding Gene Vif  
Genotype/Subtype HIV-1 B
Viral Reference K03455.1
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 31665623
Title HIV-1 Vif Triggers Cell Cycle Arrest by Degrading Cellular PPP2R5 Phospho-regulators
Author Salamango DJ,Ikeda T,Moghadasi SA,Wang J,McCann JL,Serebrenik AA,Ebrahimi D,Jarvis MC,Brown WL,Harris RS
Journal Cell reports
Journal Info 2019 Oct 29;29(5):1057-1065
Abstract HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A-E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest. Here, deep mutagenesis is used to define the Vif surface required for PPP2R5 degradation and isolate a panel of separation-of-function mutants (PPP2R5 degradation-deficient and APOBEC3G degradation-proficient). Functional studies with Vif and PPP2R5 mutants were combined to demonstrate that PPP2R5 is, in fact, the target Vif degrades to induce G2 arrest. Pharmacologic and genetic approaches show that direct modulation of PP2A function or depletion of specific PPP2R5 proteins causes an indistinguishable arrest phenotype. Vif function in the cell cycle checkpoint is present in common HIV-1 subtypes worldwide and likely advantageous for viral pathogenesis.
Sequence Data E-MTAB-8357
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.