|
Basic Characteristics of Mutations
|
|
Mutation Site
|
K453T |
|
Mutation Site Sentence
|
In HPV-33 L1, T5960C, A5997G (K135R), T6385G, G6396A (G268E), T6463C, G6520A, T6613C, A6694G, A6951C (K453T), C7044A (P484H) and G7063A were reported for the first time, these newly reported mutations were only found in China in reports related to HPV-33 L1 [30, 33, 34]. We reported the HPV-33 L2 mutations for the first time. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
L1 |
|
Standardized Encoding Gene
|
L1
|
|
Genotype/Subtype
|
HPV33 |
|
Viral Reference
|
M12732.1
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Uterine Cervicitis
Cervical Intraepithelial Neoplasia
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
China |
|
Literature Information
|
|
PMID
|
27717385
|
|
Title
|
L1 and L2 gene polymorphisms in HPV-58 and HPV-33: implications for vaccine design and diagnosis
|
|
Author
|
Chen Z,Jing Y,Wen Q,Ding X,Zhang S,Wang T,Zhang Y,Zhang J
|
|
Journal
|
Virology journal
|
|
Journal Info
|
2016 Oct 7;13(1):167
|
|
Abstract
|
BACKGROUND: Cervical cancer is associated with infection by certain subtypes of human papillomavirus (HPV). The L1 protein comprising HPV vaccine formulations elicits high-titre neutralizing antibodies and confers protection against specific HPV subtypes. HPV L2 protein is an attractive candidate for cross-protective vaccines. HPV-33 and HPV-58 are very prevalent among Chinese women. METHODS: To study the gene intratypic variations and polymorphisms of HPV-33 and HPV-58 L1/L2 in Sichuan China, HPV-33 and HPV-58 L1 and L2 genes were sequenced and compared with other genes submitted to GenBank. Phylogenetic trees were constructed by maximum-likelihood and the Kimura 2-parameters methods (MEGA 6). The secondary structure was analyzed by PSIPred software, and HPV-33 and HPV-58 L1 homology models were created by SWISS-MODEL software. The selection pressures acting on the L1/L2 genes were estimated by PAML 4.8. RESULTS: Among 124 HPV-33 L1 sequences 20 single nucleotide mutations were observed included 8/20 non-synonymous and 12/20 synonymous mutations. The 101 HPV-33 L2 sequences included 12 single nucleotide mutations comprising 7/12 non-synonymous and 5/12 synonymous mutations. The 223 HPV-58 L1 sequences included 32 single nucleotide mutations comprising 9/32 non-synonymous and 23/32 synonymous mutations. The 201 HPV-58 L2 sequences comprised 26 single nucleotide mutations including 9/26 non-synonymous and 17/26 synonymous mutations. Selective pressure analysis showed that most of the common non-synonymous mutations showed a positive selection. HPV-33 and HPV-58 L2 were more stable than HPV-33 and HPV-58 L1. CONCLUSIONS: HPV-33 and HPV-58 L2 were better candidates as clinical diagnostic targets compared with HPV-33 and HPV-58 L1. Clinical diagnostic probes and second-generation polyvalent vaccines should be designed on the basis of the unique sequence of HPV-33 and 58 L1/L2 variations in Sichuan, to improve the accuracy of clinical detection and the protective efficiency of vaccines.
|
|
Sequence Data
|
KU550663-KU550675;KU518344-KU518351;KU550602-KU550638;KU550639-KU550662
|
|
|