IV Mutation Detail Information

Virus Mutation IV Mutation K47E


Basic Characteristics of Mutations
Mutation Site K47E
Mutation Site Sentence Conversely, the HA2-K47E substitution in the HA of Bris/10 raised the threshold pH for fusion from 5.0 to 5.4.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA2
Standardized Encoding Gene HA
Genotype/Subtype H1N1
Viral Reference A/California/7/2009 wild type;A/Brisbane/10/2010 wild type
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24391498
Title A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity
Author Cotter CR,Jin H,Chen Z
Journal PLoS pathogens
Journal Info 2014 Jan;10(1):e1003831
Abstract The 2009 H1N1 pandemic (H1N1pdm) viruses have evolved to contain an E47K substitution in the HA2 subunit of the stalk region of the hemagglutinin (HA) protein. The biological significance of this single amino acid change was investigated by comparing A/California/7/2009 (HA2-E47) with a later strain, A/Brisbane/10/2010 (HA2-K47). The E47K change was found to reduce the threshold pH for membrane fusion from 5.4 to 5.0. An inter-monomer salt bridge between K47 in HA2 and E21 in HA1, a neighboring highly conserved residue, which stabilized the trimer structure, was found to be responsible for the reduced threshold pH for fusion. The higher structural and acid stability of the HA trimer caused by the E47K change also conferred higher viral thermal stability and infectivity in ferrets, suggesting a fitness advantage for the E47K evolutionary change in humans. Our study indicated that the pH of HA fusion activation is an important factor for influenza virus replication and host adaptation. The identification of this genetic signature in the HA stalk region that influences vaccine virus thermal stability also has significant implications for influenza vaccine production.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.