HCMV Mutation Detail Information

Virus Mutation HCMV Mutation K500N


Basic Characteristics of Mutations
Mutation Site K500N
Mutation Site Sentence Among the eight mutations selected with foscarnet, only two (T552N and S585A) conferred foscarnet resistance, whereas four (N408D, K500N, L802V, and L957F) had an impact on ganciclovir susceptibility.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region UL54
Standardized Encoding Gene UL54  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment ganciclovir
Location -
Literature Information
PMID 21709106
Title Recombinant phenotyping of cytomegalovirus UL54 mutations that emerged during cell passages in the presence of either ganciclovir or foscarnet
Author Gilbert C,Azzi A,Goyette N,Lin SX,Boivin G
Journal Antimicrobial agents and chemotherapy
Journal Info 2011 Sep;55(9):4019-27
Abstract Selection of human cytomegalovirus variants in the presence of ganciclovir or foscarnet led to 18 DNA polymerase mutations, 14 of which had not been previously studied. Using bacterial artificial chromosome technology, each of these mutations was individually transferred into the genome of a reference strain. Following reconstitution of infectious viral stocks, each mutant was assessed for its drug susceptibility and growth kinetics in cell culture. Computer-assisted three-dimensional (3D) modeling of the polymerase was also used to position each of the mutations in one of four proposed structural domains and to predict their influence on structural stability of the protein. Among the 10 DNA polymerase mutations selected with ganciclovir, 7 (P488R, C539R, L545S, V787L, V812L, P829S, and L862F) were associated with ganciclovir resistance, whereas 2 (F595I and V946L) conferred only foscarnet resistance. Among the eight mutations selected with foscarnet, only two (T552N and S585A) conferred foscarnet resistance, whereas four (N408D, K500N, L802V, and L957F) had an impact on ganciclovir susceptibility. Surprisingly, the combination of mutations, some of which were not associated with resistance for a specific antiviral, resulted in increasing resistance effects. 3D modeling suggested that none of the mutated residues were directly involved in the polymerase catalytic site but rather had an influence on drug susceptibility by modifying the structural flexibility of the protein. Our study significantly adds to the number of DNA polymerase mutations conferring in vitro drug resistance and emphasizes the point that evaluation of individual mutations may not accurately reflect the phenotype conferred by multiple mutations.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.