HIV Mutation Detail Information

Virus Mutation HIV Mutation K50R


Basic Characteristics of Mutations
Mutation Site K50R
Mutation Site Sentence We further examined the potency of Vif mutants for cell cycle arrest induction and PPP2R5D degradation in CEM-SS cells. NL4-3 Vif R33K, N48H, and T47P/K50R induced G2 arrest in CEM-SS cells comparably to NL4-3 Vif wild-type, but I31V/R33G did not (Fig.4D).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Vif
Standardized Encoding Gene Vif  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32446377
Title Critical role of PP2A-B56 family protein degradation in HIV-1 Vif mediated G2 cell cycle arrest
Author Nagata K,Shindo K,Matsui Y,Shirakawa K,Takaori-Kondo A
Journal Biochemical and biophysical research communications
Journal Info 2020 Jun 18;527(1):257-263
Abstract HIV-1 Vif forms an E3 ubiquitin ligase complex with host proteins to counteract host restrictive APOBEC3, and is also known to accumulate infected cells at the G2 phase to promote viral replication. However, the underlying mechanism of how Vif induces G2 arrest is not fully understood, and more specifically, direct target molecules of G2 arrest have not been identified. Here we show that degradation of B56 family proteins (PP2A-B56), one of the regulatory subunits of protein phosphatase 2A, is critical for the Vif-induced G2 arrest. NL4-3 Vif caused degradation of PP2A-B56, and complementation of PP2A-B56 overcome the Vif-induced arrest. Supportively, knockdown of PPP2R5D, one of PP2A-B56, by siRNA itself induced cell cycle arrest of non-infected cells. We also identified Vif residues I31 and R or K33 are determinants for inducing G2 arrest, and Vif variants that did not cause G2 arrest did not induce PPP2R5D degradation, although it maintain the ability to induce APOBEC3G degradation, showing strong correlation between Vif-induced arrest and PP2A-B56 degradation. In a sequence database of HIV-1 isolates, Vif strains harboring residues that presumably induce cell cycle arrest are approximately 43%, suggesting Vif-induced G2 arrest contributes to HIV-1 infection in vivo and spread. Our data help understand the mechanism of Vif-mediated arrest, and gain insights into general cell cycle regulation.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.