IV Mutation Detail Information

Virus Mutation IV Mutation K627E


Basic Characteristics of Mutations
Mutation Site K627E
Mutation Site Sentence In this study, it was found that PB1 from an avian-origin influenza A virus [A/Cambodia/P0322095/2005, H5N1 (Cam)] could enhance the polymerase activity of an attenuated human isolated virus, A/WSN/33, carrying the PB2 K627E mutation (WSN627E) in vitro.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PB2
Standardized Encoding Gene PB2
Genotype/Subtype H1N1
Viral Reference HQ200462.1-HQ200465.1
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 22090209
Title Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells
Author Xu C,Hu WB,Xu K,He YX,Wang TY,Chen Z,Li TX,Liu JH,Buchy P,Sun B
Journal The Journal of general virology
Journal Info 2012 Mar;93(Pt 3):531-540
Abstract It has been reported that the avian-origin influenza A virus PB1 protein (avian PB1) enhances influenza A virus polymerase activity in mammalian cells when it replaces the human-origin PB1 protein (human PB1). Characterization of the amino acid residues that contribute to this enhancement is needed. In this study, it was found that PB1 from an avian-origin influenza A virus [A/Cambodia/P0322095/2005, H5N1 (Cam)] could enhance the polymerase activity of an attenuated human isolated virus, A/WSN/33, carrying the PB2 K627E mutation (WSN627E) in vitro. Furthermore, 473V and 598P in the Cam PB1 were identified as the residues responsible for this enhanced activity. The results from recombinant virus experiments demonstrated the contribution of PB1 amino acids 473V and 598P to polymerase activity in mammalian cells and in mice. Interestingly, 473V is conserved in pH1N1 viruses from the 2009 pandemic. Substitution of 473V by leucine in pH1N1 PB1 led to a decreased viral polymerase activity and a lower growth rate in mammalian cells, suggesting that the PB1 473V also plays a role in maintaining efficient virus replication of the pH1N1 virus. Thus, it was concluded that two amino acids in avian-origin PB1, 473V and 598P, contribute to the polymerase activity of the H5N1 virus, especially in mammalian cells, and that 473V in PB1 also contributes to efficient replication of the pH1N1 strain.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.