HIV Mutation Detail Information

Virus Mutation HIV Mutation K65R


Basic Characteristics of Mutations
Mutation Site K65R
Mutation Site Sentence Mutations responsible for NRTI resistance were M184V (30.1%), K65R (12.1%), and D67N (5.6%).
Mutation Level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment NRTI
Location Ethiopia
Literature Information
PMID 37626789
Title HIV-1 Disease Progression and Drug Resistance Mutations among Children on First-Line Antiretroviral Therapy in Ethiopia
Author Getaneh Y,Getnet F,Ning F,Rashid A,Liao L,Yi F,Shao Y
Journal Biomedicines
Journal Info 2023 Aug 18;11(8):2293
Abstract Background: High rates of disease progression and HIV drug resistance (HIVDR) among adults taking highly active antiretroviral treatment (HAART) in Sub-Saharan Africa were previously documented. However, children were generally not considered despite their greater risk. Hence, this study was aimed to evaluate HIV-1 disease progression and drug resistance mutation among children on first-line antiretroviral therapy in Ethiopia. Method: A longitudinal study was conducted among 551 HIV-positive children (<15 years old) recruited between 2017 and 2019 at 40 antiretroviral treatment delivery sites in Ethiopia. Disease progression was retrospectively measured over a 12-year (2007-2019) follow-up as the progress towards immunosuppression. Two consecutive viral load (VL) tests were conducted in 6-month intervals to assess virologic failure (VF). For children with VF, HIV-1 genotyping and sequencing was performed for the pol gene region using in-house assay validated at the Chinese Center for Disease Control and Prevention, and the Stanford HIVDB v9.0 algorithm was used for identification of drug resistance mutations. The Kaplan-Meier analysis and Cox proportional hazards regression model were used to estimate the rate and predictors of disease progression, respectively. Results: The disease progression rate was 6.3 per 100 person-years-observation (95% CI = 4.21-8.53). Overall immunosuppression (CD4 count < 200 cells/mm(3)) during the 12-year follow-up was 11.3% (95% CI = 7.5-15.1). Immunosuppression was significantly increased as of the mean duration of 10.5 (95% CI = 10.1-10.8) years (38.2%) to 67.8% at 12 years (p < 0.001). Overall, 14.5% had resistance to at least one drug, and 6.2% had multi-drug resistance. A resistance of 67.8% was observed among children with VF. Resistance to non-nucleotide reverse transcriptase inhibitors (NNRTI) and nucleotide reverse transcriptase inhibitors (NRTI) drugs were 11.4% and 10.1%, respectively. Mutations responsible for NRTI resistance were M184V (30.1%), K65R (12.1%), and D67N (5.6%). Moreover, NNRTI-associated mutations were K103N (14.8%), Y181C (11.8%), and G190A (7.7%). Children who had a history of opportunistic infection [AHR (95% CI) = 3.4 (1.8-6.2)], vitamin D < 20 ng/mL [AHR (95% CI) = 4.5 (2.1-9.9)], drug resistance [AHR (95% CI) = 2.2 (1.4-3.6)], and VF [AHR (95% CI) = 2.82 (1.21, 3.53)] had a higher hazard of disease progression; whereas, being orphan [AOR (95% CI) = 1.8 (1.2-3.1)], history of drug substitution [(AOR (95% CI) = 4.8 (2.1-6.5), hemoglobin < 12 mg/dL [AOR (95% CI) = 1.2 (1.1-2.1)] had higher odds of developing drug resistance. Conclusions: Immunosuppression was increasing over time and drug resistance was also substantially high. Enhancing routine monitoring of viral load and HIVDR and providing a vitamin-D supplement during clinical management could help improve the immunologic outcome. Limiting HAART substitution is also crucial for children taking HAART in Ethiopia.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.