HCMV Mutation Detail Information

Virus Mutation HCMV Mutation K748N


Basic Characteristics of Mutations
Mutation Site K748N
Mutation Site Sentence To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), and aa 717 to 772 (gB deltaI-II mutation) and constructed a substitution mutation, Lys-748 to Val (Lys748Val)-Asn749Ala-Pro750Ile (gB KNPm).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region gB
Standardized Encoding Gene UL55  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 8892927
Title Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding
Author Zheng Z,Maidji E,Tugizov S,Pereira L
Journal Journal of virology
Journal Info 1996 Nov;70(11):8029-40
Abstract Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), and aa 717 to 772 (gB deltaI-II mutation) and constructed a substitution mutation, Lys-748 to Val (Lys748Val)-Asn749Ala-Pro750Ile (gB KNPm). Mutated forms of gB were expressed in U373 glioblastoma cells and subjected to analysis by flow cytometry, confocal microscopy, and immunoprecipitation. Mutations gB deltaI-II and gB deltaII alone caused secretion of gB into the medium, confirming that aa 751 to 771 function as a membrane anchor. In contrast, mutations gB deltaI and gB KNPm blocked cell surface expression and arrested gB transport in the endoplasmic reticulum (ER). Detailed examination of gB deltaI and gB KNPm with a panel of monoclonal antibodies showed that the mutated forms were indistinguishable from wild-type gB in conformation and formed oligomers; however, they remained sensitive to endoglycosidase H and did not undergo endoproteolytic cleavage. Analysis of protein complexes formed by gB and molecular chaperones in the ER showed that calnexin and calreticulin, lectin-like chaperones, bound equal amounts of uncleaved wild-type gB, gB deltaI, and gB KNPm, but the glucose-regulated proteins 78 (BiP) and 94 formed stable complexes only with the mutated forms, causing their retention in the ER. Our studies show that aa 714 to 750 are key residues in the architecture of gB molecules and that the ER chaperones, which facilitate gB folding and monitor the quality of glycoproteins, detect subtle changes in folding intermediates that are conferred by mutations in this region.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.