|
Basic Characteristics of Mutations
|
|
Mutation Site
|
L180M |
|
Mutation Site Sentence
|
Each major HBV resistance-associated mutation Final cycling conditions for indicated mutation V173L L180M Al181V T184A M2041 N236T. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
P |
|
Standardized Encoding Gene
|
P
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Hepatitis B Virus Infection
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
23804383
|
|
Title
|
Ultrasensitive amplification refractory mutation system real-time PCR (ARMS RT-PCR) assay for detection of minority hepatitis B virus-resistant strains in the era of personalized medicine
|
|
Author
|
Ntziora F,Paraskevis D,Haida C,Manesis E,Papatheodoridis G,Manolakopoulos S,Elefsiniotis I,Karamitros T,Vassilakis A,Hatzakis A
|
|
Journal
|
Journal of clinical microbiology
|
|
Journal Info
|
2013 Sep;51(9):2893-900
|
|
Abstract
|
Resistance to antiviral treatment for chronic hepatitis B virus (HBV) has been associated with mutations in the HBV polymerase region. This study aimed at developing an ultrasensitive method for quantifying viral populations with all major HBV resistance-associated mutations, combining the amplification refractory mutation system real-time PCR (ARMS RT-PCR) with a molecular beacon using a LightCycler. The discriminatory ability of this method, the ARMS RT-PCR with molecular beacon assay, was 0.01 to 0.25% for the different HBV resistance-associated mutations, as determined by laboratory-synthesized wild-type (WT) and mutant (Mut) target sequences. The assay showed 100% sensitivity for the detection of mutant variants A181V, T184A, and N236T in samples from 41 chronically HBV-infected patients under antiviral therapy who had developed resistance-associated mutations detected by direct PCR Sanger sequencing. The ratio of mutant to wild-type viral populations (the Mut/WT ratio) was >1% in 38 (63.3%) of 60 samples from chronically HBV-infected nucleos(t)ide analogue-naive patients; combinations of mutations were also detected in half of these samples. The ARMS RT-PCR with molecular beacon assay achieved high sensitivity and discriminatory ability compared to the gold standard of direct PCR Sanger sequencing in identifying resistant viral populations in chronically HBV-infected patients receiving antiviral therapy. Apart from the dominant clones, other quasispecies were also quantified. In samples from chronically HBV-infected nucleos(t)ide analogue-naive patients, the assay proved to be a useful tool in detecting minor variant populations before the initiation of the treatment. These observations need further evaluation with prospective studies before they can be implemented in daily practice.
|
|
Sequence Data
|
-
|