HCV Mutation Detail Information

Virus Mutation HCV Mutation L31M


Basic Characteristics of Mutations
Mutation Site L31M
Mutation Site Sentence Paired RASs (A30K + L31M and A30K + Y93H) were identified in 18 patients (9 of each pair);these combinations were shown to be highly resistant to daclatasvir, velpatasvir, elbasvir, and pibrentasvir.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS5A
Standardized Encoding Gene NS5A
Genotype/Subtype 3
Viral Reference -
Functional Impact and Mechanisms
Disease HCV Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment daclatasvir;velpatasvir;elbasvir;pibrentasvir.
Location -
Literature Information
PMID 29425396
Title Resistance analysis of genotype 3 hepatitis C virus indicates subtypes inherently resistant to nonstructural protein 5A inhibitors
Author Smith D,Magri A,Bonsall D,Ip CLC,Trebes A,Brown A,Piazza P,Bowden R,Nguyen D,Ansari MA,Simmonds P,Barnes E
Journal Hepatology (Baltimore, Md.)
Journal Info 2019 May;69(5):1861-1872
Abstract Hepatitis C virus (HCV) genotype (gt) 3 is highly prevalent globally, with non-gt3a subtypes common in Southeast Asia. Resistance-associated substitutions (RASs) have been shown to play a role in treatment failure. However, the role of RASs in gt3 is not well understood. We report the prevalence of RASs in a cohort of direct-acting antiviral treatment-naive, gt3-infected patients, including those with rarer subtypes, and evaluate the effect of these RASs on direct-acting antivirals in vitro. Baseline samples from 496 gt3 patients enrolled in the BOSON clinical trial were analyzed by next-generation sequencing after probe-based enrichment for HCV. Whole viral genomes were analyzed for the presence of RASs to approved direct-acting antivirals. The resistance phenotype of RASs in combination with daclatasvir, velpatasvir, pibrentasvir, elbasvir, and sofosbuvir was measured using the S52 DeltaN gt3a replicon model. The nonstructural protein 5A A30K and Y93H substitutions were the most common at 8.9% (n = 44) and 12.3% (n = 61), respectively, and showed a 10-fold and 11-fold increase in 50% effect concentration for daclatasvir compared to the unmodified replicon. Paired RASs (A30K + L31M and A30K + Y93H) were identified in 18 patients (9 of each pair); these combinations were shown to be highly resistant to daclatasvir, velpatasvir, elbasvir, and pibrentasvir. The A30K + L31M combination was found in all gt3b and gt3g samples. Conclusion: Our study reveals high frequencies of RASs to nonstructural protein 5A inhibitors in gt3 HCV; the paired A30K + L31M substitutions occur in all patients with gt3b and gt3g virus, and in vitro analysis suggests that these subtypes may be inherently resistant to all approved nonstructural protein 5A inhibitors for gt3 HCV. (Hepatology 2018).
Sequence Data KY620313-KY620880
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.