SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation L452R


Basic Characteristics of Mutations
Mutation Site L452R
Mutation Site Sentence In addition to the well-known single mutation in the RBD, the recent new mutation strains with an RBD ""double mutation"" are causing new outbreaks globally, as represented by the delta strain containing RBD L452R/T478K.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RBD
Standardized Encoding Gene S  
Genotype/Subtype Delta;Kappa
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 35062205
Title RBD Double Mutations of SARS-CoV-2 Strains Increase Transmissibility through Enhanced Interaction between RBD and ACE2 Receptor
Author Sinha S,Tam B,Wang SM
Journal Viruses
Journal Info 2021 Dec 21;14(1):1
Abstract The COVID-19 pandemic, caused by SARS-CoV-2, has led to catastrophic damage for global human health. The initial step of SARS-CoV-2 infection is the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Constant evolution of SARS-CoV-2 generates new mutations across its genome including the coding region for the RBD in the spike protein. In addition to the well-known single mutation in the RBD, the recent new mutation strains with an RBD ""double mutation"" are causing new outbreaks globally, as represented by the delta strain containing RBD L452R/T478K. Although it is considered that the increased transmissibility of double-mutated strains could be attributed to the altered interaction between the RBD and ACE2 receptor, the molecular details remain to be elucidated. Using the methods of molecular dynamics simulation, superimposed structural comparison, free binding energy estimation, and antibody escaping, we investigated the relationship between the ACE2 receptor and the RBD double mutants of L452R/T478K (delta), L452R/E484Q (kappa), and E484K/N501Y (beta, gamma). The results demonstrated that each of the three RBD double mutants altered the RBD structure and enhanced the binding of the mutated RBD to ACE2 receptor. Together with the mutations in other parts of the virus genome, the double mutations increase the transmissibility of SARS-CoV-2 to host cells.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.