|
Basic Characteristics of Mutations
|
|
Mutation Site
|
L90M |
|
Mutation Site Sentence
|
We then used the CLM to predict cleavability of the chosen 30 substrates by mutant HIV-1 proteases I84V, L90M, and I84V + L90M. (The outcome for the predicted cleavability of the 30 chosen substrates was essentially the same for the mutant HIV-1 proteases as for the HXB2 HIV-1 protease.) |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
PR |
|
Standardized Encoding Gene
|
gag-pol
|
|
Genotype/Subtype
|
HIV-1;HIV-2 |
|
Viral Reference
|
K03455.1
|
|
Functional Impact and Mechanisms
|
|
Disease
|
-
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
17352531
|
|
Title
|
A look inside HIV resistance through retroviral protease interaction maps
|
|
Author
|
Kontijevskis A,Prusis P,Petrovska R,Yahorava S,Mutulis F,Mutule I,Komorowski J,Wikberg JE
|
|
Journal
|
PLoS computational biology
|
|
Journal Info
|
2007 Mar 9;3(3):e48
|
|
Abstract
|
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.
|
|
Sequence Data
|
-
|