DENV Mutation Detail Information

Virus Mutation DENV Mutation L93R


Basic Characteristics of Mutations
Mutation Site L93R
Mutation Site Sentence One charged mutation that is theorinine 93L to arginine interacting with epitopic glutamic acid 368 strongly contributing in increasing the binding affinity as well as specificity, predicted as -9.6 kcal/mol gain in 2H12-Fab with dengue envelope domain III binding free energy relative to the wild-type.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region E
Standardized Encoding Gene Envelope
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32865135
Title A molecular dynamic simulation approach: development of dengue virus vaccine by affinity improvement techniques
Author Rafi S,Yasmin S,Uddin R
Journal Journal of biomolecular structure & dynamics
Journal Info 2022 Jan;40(1):61-76
Abstract This study is about proposing a vaccine for all four strains of dengue virus (DENV) that could be an important approach for reaching the WHO goal of reducing dengue morbidity and mortality. The significance of the DENV envelope proteins III lies in the fact that it elicits an immune response and hence can be a potential vaccine design candidate. This domain appears to play a key role in the host cell receptor binding for viral entry and in inducing long lasting protective immunity against the infection. We used long molecular dynamic simulation and mutagenesis scanning methods to provide the dynamic environment and propose the potential mutation that may result in enhancing the binding specificity and affinity of the antigen-antibody (Ag-Ab) complex. The binding free energetics were also estimated using free energy perturbation method. One charged mutation that is theorinine 93L to arginine interacting with epitopic glutamic acid 368 strongly contributing in increasing the binding affinity as well as specificity, predicted as -9.6 kcal/mol gain in 2H12-Fab with dengue envelope domain III binding free energy relative to the wild-type. In conclusion, the one charged residue that showed theoretically enhances the binding affinity of Ag-Ab complex by making couple of interactions i.e. by substituting theorinine to arginine in the antibody chains and can be considered as potential dengue vaccine candidate.Communicated by Ramaswamy H. Sarma.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.