HTLV1 Mutation Detail Information

Virus Mutation HTLV1 Mutation M188V


Basic Characteristics of Mutations
Mutation Site M188V
Mutation Site Sentence Mutation of the methionine residue in the conserved YMDD motif of the HTLV-1 reverse transcriptase to either alanine or valine (i.e., M188A or M188V) led to a factor of two increase in the rate of mutation, indicating the role of this motif in enzyme accuracy.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region pol
Standardized Encoding Gene pol  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 11000222
Title In vivo analysis of human T-cell leukemia virus type 1 reverse transcription accuracy
Author Mansky LM
Journal Journal of virology
Journal Info 2000 Oct;74(20):9525-31
Abstract Several studies have indicated that the genetic diversity of human T-cell leukemia virus type 1 (HTLV-1), a virus associated with adult T-cell leukemia, is significantly lower than that of other retroviruses, including that of human immunodeficiency virus type 1 (HIV-1). To test whether HTLV-1 variation is lower than other retroviruses, a tractable vector system has been developed to measure reverse transcription accuracy in one round of HTLV-1 replication. This system consists of a HTLV-1 vector that contains a cassette with the neomycin phosphotransferase (neo) gene, a bacterial origin of DNA replication, and the lacZalpha peptide gene region (the mutational target). The vector was replicated by trans-complementation with helper plasmids. The in vivo mutation rate for HTLV-1 was determined to be 7 x 10(-6) mutations per target base pair per replication cycle. The majority of the mutations identified were base substitution mutations, namely, G-to-A and C-to-T transitions, frameshift mutations, and deletion mutations. Mutation of the methionine residue in the conserved YMDD motif of the HTLV-1 reverse transcriptase to either alanine or valine (i.e., M188A or M188V) led to a factor of two increase in the rate of mutation, indicating the role of this motif in enzyme accuracy. The HTLV-1 in vivo mutation rate is comparable to that of bovine leukemia virus (BLV), another member of the HTLV/BLV genus of retroviruses, and is about fourfold lower than that of HIV-1. These observations indicate that while the mutation rate of HTLV-1 is significantly lower than HIV-1, this lower rate alone would not explain the low diversity in HTLV-1 isolates, supporting the hypothesis that HTLV-1 replicates primarily as a provirus during cellular DNA replication rather than as a virus via reverse transcription.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.