|
Basic Characteristics of Mutations
|
|
Mutation Site
|
M250L |
|
Mutation Site Sentence
|
According to previously studies, the patterns of genotypic resistance in the HBV polymerase can be categorized into five specific evolutionary pathways [10,11], including L-nucleoside pathway (rtM204I [or V or I/V]), the acyclic phosphonate pathway (rtN236T), the shared pathway (rtA181T [or V or T/V]) of both L-nucleoside and acyclic phosphonate, ETV resistance pathway (rtL180M+rtM204V with one of either rtT184, S202 or M250 residue changes) and multidrug resistance pathways (rtA181T+rtI233V+rtN236T+rtM250L). |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
RT |
|
Standardized Encoding Gene
|
P
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Hepatitis B, Chronic
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
China |
|
Literature Information
|
|
PMID
|
24160943
|
|
Title
|
Profile of hepatitis B virus resistance mutations against nucleoside/nucleotide analogue treatment in Chinese patients with chronic hepatitis B
|
|
Author
|
Lei J,Wang Y,Wang LL,Zhang SJ,Chen W,Bai ZG,Xu LY
|
|
Journal
|
Virology journal
|
|
Journal Info
|
2013 Oct 25;10:313
|
|
Abstract
|
AIM: Antiviral drug-resistant HBV mutants are complex and currently partly understood. This study was performed to analyze the profile of hepatitis B virus (HBV) resistance mutations against nucleos(t)ide analogues (NAs) in patients with chronic hepatitis B (CHB). METHODS: This was a population-based cross-sectional study. Serum samples of 179 patients with virological breakthrough undergoing different NAs treatment were obtained between January 2008 and December 2012. The HBV reverse transcriptase region was sequenced and the following NAs-resistant changes including rtL80, rtI169, rtV173, rtL180, rtA181, rtT184, rtA194, rtS202, rtM204, rtN236 and rtM250 were analyzed. RESULTS: In this cohort, 21.2% (38/179) were genotypes B and 78.8% (141/179) were genotypes C; and 89.4% (160/179) of them detected NAs-resistant mutations. The prevalence of HBV mutations at rtM204 was 93.0% (106/114) in patients with lamivudine (LAM) or telbivudine (LdT)-based therapies, and that of rtN236 mutations was 76.1% (35/46) in patients with adefovir dipivoxil (ADV)-based therapies. Among LAM/LdT based therapies, HBV rtM204I was significantly associated with HBV rtL80I/V mutations [rtM204I+rtL80I/V (50.0%, 32/64) vs. rtM204V+rtL80I/V (27.3%,9/33), P=0.032]; while the HBV rtM204V mutations was significantly associated with HBV rtL180M mutations [rtM204V+rtL180M (100%, 33/33) vs. rtM204I+rtL180M (60.9%, 39/64), P<0.001]. Additionally, HBV rtA181 mutations were observed in 19.3% (22/114) of patients with LAM/LdT-based therapy and 23.9% (11/46) of patients with ADV-based therapy. CONCLUSIONS: Majority of virological breakthrough is associated with NAs-resistant HBV, and the mutation patterns of NAs-resistant HBV are complicated in real clinical practice.
|
|
Sequence Data
|
-
|
|
|