IV Mutation Detail Information

Virus Mutation IV Mutation M52F


Basic Characteristics of Mutations
Mutation Site M52F
Mutation Site Sentence Consistent with our deep mutational scanning result, mutations I32T, T33L, S37Y, and D43V were rescued to a titer similar to or higher than WTNS-split, whereas M52F and Q59T did not produce any detectable infectious particles.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region
Standardized Encoding Gene
Genotype/Subtype H1N1
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 39817904
Title Probing the functional constraints of influenza A virus NEP by deep mutational scanning
Author Teo QW,Wang Y,Lv H,Oade MS,Mao KJ,Tan TJC,Huan YW,Rivera-Cardona J,Shao EK,Choi D,Wang C,Tavakoli Dargani Z,Brooke CB,Te Velthuis AJW,Wu NC
Journal Cell reports
Journal Info 2025 Jan 28;44(1):115196
Abstract The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function. Here, we systematically measure the replication fitness effects of >1,800 mutations of NEP. Our results show that the N-terminal domain has high mutational tolerance. Additional experiments show that N-terminal domain mutations affect viral transcription and replication dynamics, host cellular responses, and mammalian adaptation of avian influenza virus. Overall, our study not only advances the functional understanding of NEP but also provides insights into its evolutionary constraints.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.