HBV Mutation Detail Information

Virus Mutation HBV Mutation M550A


Basic Characteristics of Mutations
Mutation Site M550A
Mutation Site Sentence From the f(ins) value analysis, it is evident that M550I and M550V exhibit higher fidelity values than the wild-type HBV DNA polymerase, while M550A exhibits similar fidelity values.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region P
Standardized Encoding Gene P  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 15469692
Title Increased DNA polymerase fidelity of the Lamivudine resistant variants of human hepatitis B virus DNA polymerase
Author Hong YB,Choi Y,Jung G
Journal Journal of biochemistry and molecular biology
Journal Info 2004 Mar 31;37(2):167-76
Abstract Although efficient antiviral lamivudine is used for HBV-infected patients, a prolonged treatment with nucleoside analogs often results in lamivudine-resistant variants. In this study, we evaluated the fidelity of the lamivudine-resistant variants. The FLAG-tagged wild-type (FPolE) and Met550 variants (FPolE/M550A, M550V, and M550I) of HBV DNA polymerases were expressed in insect cells, then purified. Like many other reverse transcriptases, no 3' --> 5' exonuclease activity was detected in the HBV DNA polymerase. Since there is no proofreading activity, then the use of the site-specific nucleotide misincorporation method is beneficial. From the f(ins) value analysis, it is evident that M550I and M550V exhibit higher fidelity values than the wild-type HBV DNA polymerase, while M550A exhibits similar fidelity values. It is therefore suggested that lamivudine resistance comes from the stringency to dNTP binding and the discrimination of dCTP and lamivudine in M550V and M550I.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.