IV Mutation Detail Information

Virus Mutation IV Mutation N125T


Basic Characteristics of Mutations
Mutation Site N125T
Mutation Site Sentence Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA
Standardized Encoding Gene HA
Genotype/Subtype H1N1
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Australia
Literature Information
PMID 22194944
Title Adaption of seasonal H1N1 influenza virus in mice
Author Xu L,Bao L,Li F,Lv Q,Ma Y,Zhou J,Xu Y,Deng W,Zhan L,Zhu H,Ma C,Shu Y,Qin C
Journal PloS one
Journal Info 2011;6(12):e28901
Abstract The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses.
Sequence Data JN899402; JN899403; JN899404;JN899405
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.