JEV Mutation Detail Information

Virus Mutation JEV Mutation N15A


Basic Characteristics of Mutations
Mutation Site N15A
Mutation Site Sentence One of the four prM mutants, N15A/T17A, showed an additional defect in virus growth in mosquito C6/36 cells but not human neuroblastoma SH-SY5Y or hamster BHK-21 cells.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region prM
Standardized Encoding Gene prM
Genotype/Subtype -
Viral Reference AY585243
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 18524814
Title A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice
Author Kim JM,Yun SI,Song BH,Hahn YS,Lee CH,Oh HW,Lee YM
Journal Journal of virology
Journal Info 2008 Aug;82(16):7846-62
Abstract The prM protein of Japanese encephalitis virus (JEV) contains a single potential N-linked glycosylation site, N(15)-X(16)-T(17), which is highly conserved among JEV strains and closely related flaviviruses. To investigate the role of this site in JEV replication and pathogenesis, we manipulated the RNA genome by using infectious JEV cDNA to generate three prM mutants (N15A, T17A, and N15A/T17A) with alanine substituting for N(15) and/or T(17) and one mutant with silent point mutations introduced into the nucleotide sequences corresponding to all three residues in the glycosylation site. An analysis of these mutants in the presence or absence of endoglycosidases confirmed the addition of oligosaccharides to this potential glycosylation site. The loss of prM N glycosylation, without significantly altering the intracellular levels of viral RNA and proteins, led to an approximately 20-fold reduction in the production of extracellular virions, which had protein compositions and infectivities nearly identical to those of wild-type virions; this reduction occurred at the stage of virus release, rather than assembly. This release defect was correlated with small-plaque morphology and an N-glycosylation-dependent delay in viral growth. A more conservative mutation, N15Q, had the same effect as N15A. One of the four prM mutants, N15A/T17A, showed an additional defect in virus growth in mosquito C6/36 cells but not human neuroblastoma SH-SY5Y or hamster BHK-21 cells. This cell type dependence was attributed to abnormal N-glycosylation-independent biogenesis of prM. In mice, the elimination of prM N glycosylation resulted in a drastic decrease in virulence after peripheral inoculation. Overall, our findings indicate that this highly conserved N-glycosylation motif in prM is crucial for multiple stages of JEV biology: prM biogenesis, virus release, and pathogenesis.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.