IV Mutation Detail Information

Virus Mutation IV Mutation N161S


Basic Characteristics of Mutations
Mutation Site N161S
Mutation Site Sentence Despite these findings, we found N161S substitution in all four H3N2 influenza stains resulting in the gain of NSS160-162 glycosylation site.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS
Standardized Encoding Gene NS
Genotype/Subtype H3N2
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Bangladesh
Literature Information
PMID 29607359
Title Molecular analysis of hemagglutinin, neuraminidase, matrix genes provide insight into the genetic diversity of seasonal H3N2 human influenza a viruses in Bangladesh during July-August, 2012
Author Jain M,Islam S,Rahman ASMZ,Akhtar S,Hasan KN,Ahsan GU,Khaleque A,Hossain M
Journal Virusdisease
Journal Info 2018 Mar;29(1):54-60
Abstract Influenza A virus subtype H3 is a threat to public health and it is important to understand the evolution of the viruses for the surveillance and the selection of vaccine strains. Comparative analysis of four Bangladeshi isolates with isolates circulating other parts of the world based on three candidate genes hemagglutinin (HA), neuraminidase (NA), matrix protein (MA) showed no evidence of significant distinct subclade of viruses circulating in the country over the period of study. Despite these findings, we found N161S substitution in all four H3N2 influenza stains resulting in the gain of NSS160-162 glycosylation site. All H3N2 Influenza subtypes in the study had amino acid substitution at position 31 on the M2 protein (Aspartic acid to Asparagine) which is known to be responsible for amantadine drug resistance.
Sequence Data KY801317-KY801328
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.