HBV Mutation Detail Information

Virus Mutation HBV Mutation N40S


Basic Characteristics of Mutations
Mutation Site N40S
Mutation Site Sentence Table 3 Notable mutations in envelope proteins of HBV DNA+ donations
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location China
Literature Information
PMID 36815535
Title Comparative analysis of hepatitis B virus infections in blood donors born before and after the implementation of universal HBV vaccination in southern China
Author Ye X,Li T,Li Y,Zeng J,Li R,Xu X,Guan X,Li L
Journal Transfusion medicine (Oxford, England)
Journal Info 2023 Feb;33(1):81-89
Abstract BACKGROUND: In China, the vaccinated blood donors have rapidly increased by recent years, which may impact blood safety. The true prevalence of HBV between vaccinated blood donors and non-vaccinated blood donors should be explored. STUDY DESIGN AND METHODS: The samples of blood donors were collected and detected for serologic markers of HBV in the Shenzhen Blood Centre (SZBC). The discrepant results were tested with commercial electrochemiluminescence immunoassay (ELCI) for HBsAg, anti-HBs, HBeAg, Anti-HBe and Anti-HBc, alternative MPX ID NAT, nested PCR, and a quantitative real-time polymerase chain reaction (qPCR) assay for HBV DNA. The serological and molecular characteristics of HBV infected blood donors were analysed, and the effects on blood safety for donors born before and after the implementation of universal HBV vaccination were compared. RESULTS: Out of 242 presumed HBV infected donors from 26 318 donations, 131 (0.49%, [95% CI, 0.43-0.59]) chronic HBV infections (CHB, HBsAg detected with or without DNA), 58 (0.22%, [95% CI, 0.17-0.28]) occult hepatitis B infections (OBI, HBsAg not detected, assume anti-HBc positive and/or anti-HBs with HBV DNA) and 3 (0.011%, [95% CI, 0.0023-0.033]) window period (WP) infections were confirmed respectively. There were 28 CHBs (0.44%), 7 OBIs (0.11%) and 1 WP (0.016%) from vaccinated blood donor and 103 CHBs (0.52%), 51 OBIs (0.26%) and 2 WPs (0.01%) from non-vaccinated blood donor. The HBV+ (CHBs, OBIs and WPs) rate (0.56%) in vaccinated donors was lower than in non-vaccinated donors (0.78%, p < 0.05). The HBsAg titers of vaccinated infected blood donors (Median: 128.8 IU/ml) were much higher than non-vaccinated infected blood donors (58.4 IU/ml). The OBI yield rates in the vaccinated blood donors was significantly lower than the non-vaccinated blood donors (p < 0.05). There 102/124 (82.3%) samples were genotype B, 22/124 (17.7%) were genotype C respectively. There was no significant difference in the distribution of genotype between non-vaccinated blood donors (B/C, 86/17) and vaccinated blood donors (B/C, 23/6; p > 0.05). High frequency of vaccine escape mutations M133L (32.4%) and E164G in S region of genotype B strains and substitution L175S (40.9%) related to vaccine escape in S region of genotype C strains were identified. CONCLUSION: The universal HBV vaccination program markedly reduces the risk of HBV infection in blood donors, and provides a significant guarantee for the safety of blood transfusion. Several important mutations detected related vaccine escape and notable mutations needed further investigated.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.