SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation N439K


Basic Characteristics of Mutations
Mutation Site N439K
Mutation Site Sentence TABLE
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference EPI_ISL_438123;EPI_ISL_4236051;EPI_ISL_4172121
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Vienna
Literature Information
PMID 35711424
Title Heterogeneous SARS-CoV-2-Neutralizing Activities After Infection and Vaccination
Author Graninger M,Camp JV,Aberle SW,Traugott MT,Hoepler W,Puchhammer-Stockl E,Weseslindtner L,Zoufaly A,Aberle JH,Stiasny K
Journal Frontiers in immunology
Journal Info 2022 May 30;13:888794
Abstract BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with different resistance levels to existing immunity have recently emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit neutralizing activities are considered the best correlate of protection and an understanding of humoral immunity is crucial for controlling the pandemic. We thus analyzed such antibodies in individuals recovered from infection in 2020 as well as vaccinees after two doses of an mRNA vaccine. METHODS: Neutralizing antibody responses against three SARS-CoV-2 variants (D614G, VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24 non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or second vaccination, respectively, as well as six months later. In addition, the effect of the S sequence of the infecting strain on neutralization was studied. RESULTS: Non-hospitalized patients had the lowest neutralization titers against all variants, while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing activity was lower against the two VOCs and declined significantly in all cohorts after six months. This decrease was more pronounced in hospitalized and vaccinated individuals than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA value ratio) was higher in the infected cohorts than in vaccinees and did not differ between non-hospitalized and hospitalized patients. Patients infected with viral strains carrying mutations in the N-terminal domain of the spike protein were impaired in Beta VOC neutralization. CONCLUSIONS: Specific neutralizing activities were higher in infected than in vaccinated individuals, and no difference in the quality of these antibodies was observed between hospitalized and non-hospitalized patients, despite significantly lower titers in the latter group. Additionally, antibody responses of infected individuals showed greater heterogeneity than those of vaccinees, which was associated with mutations in the spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-19 vaccination, which is an important issue to consider in ongoing vaccine strategy improvements.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.