SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation N501Y


Basic Characteristics of Mutations
Mutation Site N501Y
Mutation Site Sentence Specifically, vaccine-resistant mutation Y449S in the spike (S) protein receptor-binding domain, which occurred in co-mutations Y449S and N501Y, has reduced infectivity compared to that of the original SARS-CoV-2 but can disrupt existing antibodies that neutralize the virus.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 34873910
Title Mechanisms of SARS-CoV-2 Evolution Revealing Vaccine-Resistant Mutations in Europe and America
Author Wang R,Chen J,Wei GW
Journal The journal of physical chemistry letters
Journal Info 2021 Dec 16;12(49):11850-11857
Abstract The importance of understanding SARS-CoV-2 evolution cannot be overlooked. Recent studies confirm that natural selection is the dominating mechanism of SARS-CoV-2 evolution, which favors mutations that strengthen viral infectivity. Here, we demonstrate that vaccine-breakthrough or antibody-resistant mutations provide a new mechanism of viral evolution. Specifically, vaccine-resistant mutation Y449S in the spike (S) protein receptor-binding domain, which occurred in co-mutations Y449S and N501Y, has reduced infectivity compared to that of the original SARS-CoV-2 but can disrupt existing antibodies that neutralize the virus. By tracking the evolutionary trajectories of vaccine-resistant mutations in more than 2.2 million SARS-CoV-2 genomes, we reveal that the occurrence and frequency of vaccine-resistant mutations correlate strongly with the vaccination rates in Europe and America. We anticipate that as a complementary transmission pathway, vaccine-breakthrough or antibody-resistant mutations, like those in Omicron, will become a dominating mechanism of SARS-CoV-2 evolution when most of the world's population is either vaccinated or infected. Our study sheds light on SARS-CoV-2 evolution and transmission and enables the design of the next-generation mutation-proof vaccines and antibody drugs.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.