SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation N501Y


Basic Characteristics of Mutations
Mutation Site N501Y
Mutation Site Sentence The first one (RT-PCR#1) targeted the 69-70 deletion and the N501Y substitution simultaneously, whereas the second one (RT-PCR#2) targeted the E484K, E484Q, and L452R substitutions simultaneously.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RBD
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 37243201
Title Evaluation of Analytical and Clinical Performance and Usefulness in a Real-Life Hospital Setting of Two in-House Real-Time RT-PCR Assays to Track SARS-CoV-2 Variants of Concern
Author Moisan A,Soares A,De Oliveira F,Alessandri-Gradt E,Lecoquierre F,Fourneaux S,Plantier JC,Gueudin M
Journal Viruses
Journal Info 2023 May 4;15(5):1115
Abstract Since the end of 2020, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have emerged and spread worldwide. Tracking their evolution has been a challenge due to the huge number of positive samples and limited capacities of whole-genome sequencing. Two in-house variant-screening RT-PCR assays were successively designed in our laboratory in order to detect specific known mutations in the spike region and to rapidly detect successively emerging VOCs. The first one (RT-PCR#1) targeted the 69-70 deletion and the N501Y substitution simultaneously, whereas the second one (RT-PCR#2) targeted the E484K, E484Q, and L452R substitutions simultaneously. To evaluate the analytical performance of these two RT-PCRs, 90 negative and 30 positive thawed nasopharyngeal swabs were retrospectively analyzed, and no discordant results were observed. Concerning the sensitivity, for RT-PCR#1, serial dilutions of the WHO international standard SARS-CoV-2 RNA, corresponding to the genome of an Alpha variant, were all detected up to 500 IU/mL. For RT-PCR#2, dilutions of a sample harboring the E484K substitution and of a sample harboring the L452R and E484Q substitutions were all detected up to 1000 IU/mL and 2000 IU/mL, respectively. To evaluate the performance in a real-life hospital setting, 1308 and 915 profiles of mutations, obtained with RT-PCR#1 and RT-PCR#2, respectively, were prospectively compared to next-generation sequencing (NGS) data. The two RT-PCR assays showed an excellent concordance with the NGS data, with 99.8% for RT-PCR#1 and 99.2% for RT-PCR#2. Finally, for each mutation targeted, the clinical sensitivity, the clinical specificity and the positive and negative predictive values showed excellent clinical performance. Since the beginning of the SARS-CoV-2 pandemic, the emergence of variants-impacting the disease's severity and the efficacy of vaccines and therapies-has forced medical analysis laboratories to constantly adapt to the strong demand for screening them. Our data showed that in-house RT-PCRs are useful and adaptable tools for monitoring such rapid evolution and spread of SARS-CoV-2 VOCs.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.