HPV Mutation Detail Information

Virus Mutation HPV Mutation N53S


Basic Characteristics of Mutations
Mutation Site N53S
Mutation Site Sentence We have found immunoresistance of the clones to correlate with the point mutation in the E7 oncogene, which resulted in the N53S substitution in the immunodominant epitope RAHYNIVTF (aa 49-57).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region E7
Standardized Encoding Gene E7
Genotype/Subtype HPV16
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 17962940
Title Mutation in the immunodominant epitope of the HPV16 E7 oncoprotein as a mechanism of tumor escape
Author Smahel M,Tejklova P,Smahelova J,Polakova I,Mackova J
Journal Cancer immunology, immunotherapy : CII
Journal Info 2008 Jun;57(6):823-31
Abstract Infection with high-risk types of human papillomavirus (HPV) can cause the development of malignant tumors. To study mechanisms responsible for immune escape of tumor cells infected with HPV16, we previously used mouse oncogenic TC-1 cells producing HPV16 E6 and E7 oncoproteins to derive TC-1 clones resistant to immunization against E7. We have found immunoresistance of the clones to correlate with the point mutation in the E7 oncogene, which resulted in the N53S substitution in the immunodominant epitope RAHYNIVTF (aa 49-57). Here, we have shown that this mutation reduced stabilization of H-2D(b) molecules on RMA-S cells and eliminated immunogenicity of E7. The resistance of TC-1 clones was E7-specific as immunization against E6 inhibited tumor growth. Transduction of the TC-1/F9 clone carrying the mutated epitope with the wild-type E7 gene restored susceptibility to immunization against E7. Our results suggest that mutagenesis of tumor antigens can lead to the escape of malignant cells and should be considered in the development and evaluation of cancer immunotherapy.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.