HBV Mutation Detail Information

Virus Mutation HBV Mutation P120E


Basic Characteristics of Mutations
Mutation Site P120E
Mutation Site Sentence Ten HBsAg mutants having single mutation within the ""a"" determinant including P120E, T123N, Q129H, M133L, K141E, P142S, D144A, G145R, N146S and C147S together with a wt form were successfully constructed and expressed in CHO cells.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24076590
Title Construction and expression of hepatitis B surface antigen escape variants within the "a" determinant by site directed mutagenesis
Author Golsaz Shirazi F,Amiri MM,Mohammadi H,Bayat AA,Roohi A,Khoshnoodi J,Zarnani AH,Jeddi-Tehrani M,Kardar GA,Shokri F
Journal Iranian journal of immunology :, IJI..
Journal Info 2013 Sep;10(3):127-38
Abstract BACKGROUND: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The ""a"" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. OBJECTIVES: To construct clinically relevant recombinant mutant forms of HBsAg and assessment of their reactivity with anti-HBs monoclonal antibodies (MAbs). METHODS: Wild type (wt) and mutant (mt) HBsAg genes were constructed by site directed mutagenesis and SEOing PCR. The amplified genes were inserted into pCMV6-neo plasmid and transfected in CHO cell line. The expression of wt- and mtHBsAg was assessed by commercial ELISA assays and stable cells were established and cloned by limiting dilution. The recombinant mutants were further characterized using a panel of anti-HBs monoclonal antibodies (MAbs) and the pattern of their reactivity was assessed by ELISA. RESULTS: Ten HBsAg mutants having single mutation within the ""a"" determinant including P120E, T123N, Q129H, M133L, K141E, P142S, D144A, G145R, N146S and C147S together with a wt form were successfully constructed and expressed in CHO cells. Reactivity of anti-HBs MAbs with mtHBsAgs displayed different patterns. The effect of mutations on antibody binding differed depending on the amino acid involved and its location within the ''a'' determinant. Mutation at amino acids 123 and 145 resulted in either complete loss or significant reduction of binding to all anti-HBs MAbs. CONCLUSION: Our panel of mtHBsAgs is a valuable tool for assessment of the antibody response to HBV escape mutants and may have substantial implications in HBV immunological diagnostics.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.