CHIKV Mutation Detail Information

Virus Mutation CHIKV Mutation P173S


Basic Characteristics of Mutations
Mutation Site P173S
Mutation Site Sentence In addition, virus populations resistant to compound 11 included mutation E2-P173S, which mapped to the proposed binding pocket, and second site mutation E1-Y24H.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region E2
Standardized Encoding Gene E2
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Chikungunya Fever    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 34048233
Title Discovery of a Potent and Selective Chikungunya Virus Envelope Protein Inhibitor through Computer-Aided Drug Design
Author Battini L,Fidalgo DM,Alvarez DE,Bollini M
Journal ACS infectious diseases
Journal Info 2021 Jun 11;7(6):1503-1518
Abstract The worldwide expansion of chikungunya virus (CHIKV) into tropical and subtropical areas in the last 15 years has posed a currently unmet need for vaccines and therapeutics. The E2-E1 envelope glycoprotein complex binds receptors on the host cell and promotes membrane fusion during CHIKV entry, thus constituting an attractive target for the development of antiviral drugs. In order to identify CHIKV antivirals acting through inhibition of the envelope glycoprotein complex function, our first approach was to search for amenable druggable sites within the E2-E1 heterodimer. We identified a pocket located in the interface between E2 and E1 around the fusion loop. Then, via a structure-based virtual screening approach and in vitro assay of antiviral activity, we identified compound 7 as a specific inhibitor of CHIKV. Through a lead optimization process, we obtained compound 11 that demonstrated increased antiviral activity and low cytotoxicity (EC(50) 1.6 muM, CC(50) 56.0 muM). Molecular dynamics simulations were carried out and described a possible interaction pattern of compound 11 and the E1-E2 dimer that could be useful for further optimization. As expected from target site selection, compound 11 inhibited virus internalization during CHIKV entry. In addition, virus populations resistant to compound 11 included mutation E2-P173S, which mapped to the proposed binding pocket, and second site mutation E1-Y24H. Construction of recombinant viruses showed that these mutations conferred antiviral resistance in the parental background. Finally, compound 11 presents acceptable solubility values and is chemically and enzymatically stable in different media. Altogether, these findings uncover a suitable pocket for the design of CHIKV entry inhibitors with promising antiviral activity and pharmacological profiles.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.