SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation P323L


Basic Characteristics of Mutations
Mutation Site P323L
Mutation Site Sentence The first viral genome/proteome change associated with a significant change in viral properties (the P323L substitution in NSP12 and D614G substitution in Spike) took 3 months to increase in frequency in the UK (and worldwide) from minor variant genomes to become the dominant sequence.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NSP12
Standardized Encoding Gene ORF1b  
Genotype/Subtype -
Viral Reference NC_045512.2
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location UK
Literature Information
PMID 39970290
Title Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time
Author Dong X,Matthews DA,Gallo G,Darby A,Donovan-Banfield I,Goldswain H,MacGill T,Myers T,Orr R,Bailey D,Carroll MW,Hiscox JA
Journal Nucleic acids research
Journal Info 2025 Feb 8;53(4):gkaf077
Abstract In infected individuals, viruses are present as a population consisting of dominant and minor variant genomes. Most databases contain information on the dominant genome sequence. Since the emergence of SARS-CoV-2 in late 2019, variants have been selected that are more transmissible and capable of partial immune escape. Currently, models for projecting the evolution of SARS-CoV-2 are based on using dominant genome sequences to forecast whether a known mutation will be prevalent in the future. However, novel variants of SARS-CoV-2 (and other viruses) are driven by evolutionary pressure acting on minor variant genomes, which then become dominant and form a potential next wave of infection. In this study, sequencing data from 96 209 patients, sampled over a 3-year period, were used to analyse patterns of minor variant genomes. These data were used to develop unsupervised machine learning clusters to identify amino acids that had a greater potential for mutation than others in the Spike protein. Being able to identify amino acids that may be present in future variants would better inform the design of longer-lived medical countermeasures and allow a risk-based evaluation of viral properties, including assessment of transmissibility and immune escape, thus providing candidates with early warning signals for when a new variant of SARS-CoV-2 emerges.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.