RABV Mutation Detail Information

Virus Mutation RABV Mutation P367S


Basic Characteristics of Mutations
Mutation Site P367S
Mutation Site Sentence Single-step growth curves showed that rSAD-K83R and rSAD-K83R&P367S had similar growth kinetics, whereas the rSAD-P367S has similar growth kinetics as the parental rSAD (Figures 4B,C). 
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region G
Standardized Encoding Gene RABVgp4  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 33634109
Title Change in the Single Amino Acid Site 83 in Rabies Virus Glycoprotein Enhances the BBB Permeability and Reduces Viral Pathogenicity
Author Li C,Wang Y,Liu H,Zhang X,Baolige D,Zhao S,Hu W,Yang Y
Journal Frontiers in cell and developmental biology
Journal Info 2021 Feb 9;8:632957
Abstract Lab-attenuated rabies virus (RABV) is a highly cellular adaptation and less pathogenic than wild-type RABV. However, the molecular mechanisms that regulate the cellular adaptation and pathogenicity remain obscure. In this work, we isolated a wild-type RABV (CNIM1701) from a rabid bovine in northern China. The original CNIM1701 was lethal in adult mice and restricted replication in cell cultures. After 20 serial passages in the brains of suckling mice, the virus was renamed CNIM1701-P20, which was safe in adult mice and replicated well in cell cultures. In addition, sequence comparison analysis of the original CNIM1701 and CNIM1701-P20 identified 2 amino acid substitutions on G protein (Lys83 --> Arg83 and Pro367 --> Ser 367) related to pathogenesis and cellular adaptation. Using site-directed mutagenesis to exchange Lys83 with Arg83 and Pro367 with Ser 367 in the G protein of the RABV SAD strain, the pathogenicity of rSAD-K83R was significantly decreased. Our data indicate that the decreased pathogenicity of rSAD-K83R is due to increasing the expression of RABV-G, which also induced a higher level of apoptosis in infected cells. Furthermore, the K83 mutation induced high expression of MMP-2 and MMP-9 on DCs and promoted blood-brain barrier (BBB) permeability. These results demonstrate that the pathogenesis of RABV is partially dependent on G expression and BBB permeability, which may help in the design and development of highly safe, live-RABV vaccines.
Sequence Data KY649620; MF172976;HM267792
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.