SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation P681R


Basic Characteristics of Mutations
Mutation Site P681R
Mutation Site Sentence The predominant mutation in the spike protein of the B.1.617 sublineage includes D614G, L452R, and P681R (Fig. 1 and Table 1).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B.1.617
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 36092780
Title A computational evaluation of structural stability of omicron and delta mutations of SARS-CoV-2 spike proteins and human ACE-2 interactions
Author Idowu KA,Onyenaka C,Olaleye OA
Journal Informatics in medicine unlocked
Journal Info 2022;33:101074
Abstract Several more infectious SARS-CoV-2 variants have emerged globally since SARS-CoV-2 pandemic and the discovery of the first D614G variant of SARS-CoV-2 spike proteins in 2020. Delta (B.1.617.2) and Omicron (B.1.1.529) variants have proven to be of major concern out of all the reported variants, considering their influence on the virus' transmissibility and severity. This study aimed at evaluating the impact of mutations on these two variants on stability and molecular interactions between the viral Spike protein and human angiotensin converting enzyme-2 (hACE-2). The spike proteins receptor binding domain (RBD) was docked with the hACE-2 using HADDOCK servers. To understand and establish the effects of the mutations on the structural stability and flexibility of the RBD-hACE-2 complex, molecular dynamic (MD) simulation of the docked complex was performed and evaluated. The findings from both molecular docking analysis and binding free energy showed that the Omicron (OM) variant has high receptiveness towards hACE-2 versus Delta variant (DT), thereby, responsible for its increase in transmission. The structural stability and flexibility evaluation of variants' systems showed that mutations on DT and OM variants disturbed the stability of either the spike protein or the RBD-hACE-2 complex, with DT variant having greater instability impact. This study, therefore, assumed this obvious instability observed in DT variant might be associated or responsible for the reported severity in DT variant disease over the OM variant disease. This study provides molecular insight into the effects of OM and DT variants on stability and interactions between SARS-CoV-2 protein and hACE-2.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.