HCMV Mutation Detail Information

Virus Mutation HCMV Mutation Q228H


Basic Characteristics of Mutations
Mutation Site Q228H
Mutation Site Sentence The remaining 5 sequence variants (L134V, S227I, Q228H, R410G, and D414N) were shown to be inert with regard to letermovir susceptibility, thus representing natural polymorphisms.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region UL56
Standardized Encoding Gene UL56  
Genotype/Subtype -
Viral Reference FJ527563
Functional Impact and Mechanisms
Disease Cytomegalovirus infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location -
Literature Information
PMID 26113373
Title Characterization of Cytomegalovirus Breakthrough Events in a Phase 2 Prophylaxis Trial of Letermovir (AIC246, MK 8228)
Author Lischka P,Michel D,Zimmermann H
Journal The Journal of infectious diseases
Journal Info 2016 Jan 1;213(1):23-30
Abstract BACKGROUND: The efficacy of different letermovir (AIC246, MK8228) doses (60, 120, and 240 mg/day) against human cytomegalovirus (HCMV) was evaluated in a recent phase 2b dose-range-finding prophylaxis study in stem-cell transplant recipients. Here we report the genotypic and phenotypic characterization of 15 viral breakthroughs considered to be virological failures. METHODS: Direct sequencing of an HCMV open reading frame UL56 region that included amino acids 230-370 and thus encompassed all known letermovir resistance mutations was followed by marker-transfer experiments to assess the impact of the identified sequence polymorphisms on viral fitness and susceptibility to letermovir. RESULTS: UL56 genotyping was successful for 12 of 15 patients. Six amino acid substitutions were detected in 5 patients. In 1 subject from the 60-mg-dose group, the known letermovir resistance mutation V236M was identified subsequent to a wild-type viremic episode. The remaining 5 sequence variants (L134V, S227I, Q228H, R410G, and D414N) were shown to be inert with regard to letermovir susceptibility, thus representing natural polymorphisms. CONCLUSIONS: Our findings represent the first case of a letermovir resistance mutation emerging in the clinic, apparently because of a suboptimal prophylactic dose (60 mg/day). This is in agreement with the trial's efficacy analyses, findings of which suggest that letermovir doses of 60 mg/day and 120 mg/day are suboptimal for prophylaxis whereas a dose of 240 mg/day appears to achieve complete suppression of viremia.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.