HIV Mutation Detail Information

Virus Mutation HIV Mutation Q475A


Basic Characteristics of Mutations
Mutation Site Q475A
Mutation Site Sentence Besides, both compounds were tested also on RTs mutated in two amino acid residues within the RNase H domain, Q475A and A502F, part of conserved regions of RNase H domain, that have been shown to be involved in the binding of RNase H inhibitors into a pocket close to the RNase H catalytic site but acting as allosteric RNase H inhibitors.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment NNRTIs;efavirenz (EFV)
Location -
Literature Information
PMID 32183488
Title 2-(Arylamino)-6-(trifluoromethyl)nicotinic Acid Derivatives: New HIV-1 RT Dual Inhibitors Active on Viral Replication
Author Corona A,Onnis V,Del Vecchio C,Esposito F,Cheng YC,Tramontano E
Journal Molecules (Basel, Switzerland)
Journal Info 2020 Mar 15;25(6):1338
Abstract The persistence of the AIDS epidemic, and the life-long treatment required, indicate the constant need of novel HIV-1 inhibitors. In this scenario the HIV-1 Reverse Transcriptase (RT)-associated ribonuclease H (RNase H) function is a promising drug target. Here we report a series of compounds, developed on the 2-amino-6-(trifluoromethyl)nicotinic acid scaffold, studied as promising RNase H dual inhibitors. Among the 44 tested compounds, 34 inhibited HIV-1 RT-associated RNase H function in the low micromolar range, and seven of them showed also to inhibit viral replication in cell-based assays with a selectivity index up to 10. The most promising compound, 21, inhibited RNase H function with an IC(50) of 14 microM and HIV-1 replication in cell-based assays with a selectivity index greater than 10. Mode of action studies revealed that compound 21 is an allosteric dual-site compound inhibiting both HIV-1 RT functions, blocking the polymerase function also in presence of mutations carried by circulating variants resistant to non-nucleoside inhibitors, and the RNase H function interacting with conserved regions within the RNase H domain. Proving compound 21 as a promising lead for the design of new allosteric RNase H inhibitors active against viral replication with not significant cytotoxic effects.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.