SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation Q57H


Basic Characteristics of Mutations
Mutation Site Q57H
Mutation Site Sentence Other variants including ORF3a Q57H (2893 samples), ORF1ab T265I (NSP3 T85I, 2442 samples), ORF8 L84S (1669 samples), N203_204delinsKR (1573 samples), ORF1ab L3606F (NSP6 L37F, 1070 samples) were the key variants for identifying clades.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region ORF3a
Standardized Encoding Gene ORF3a  
Genotype/Subtype -
Viral Reference NC_045512
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32742035
Title Variant analysis of SARS-CoV-2 genomes
Author Koyama T,Platt D,Parida L
Journal Bulletin of the World Health Organization
Journal Info 2020 Jul 1;98(7):495-504
Abstract OBJECTIVE: To analyse genome variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). METHODS: Between 1 February and 1 May 2020, we downloaded 10 022 SARS CoV-2 genomes from four databases. The genomes were from infected patients in 68 countries. We identified variants by extracting pairwise alignment to the reference genome NC_045512, using the EMBOSS needle. Nucleotide variants in the coding regions were converted to corresponding encoded amino acid residues. For clade analysis, we used the open source software Bayesian evolutionary analysis by sampling trees, version 2.5. FINDINGS: We identified 5775 distinct genome variants, including 2969 missense mutations, 1965 synonymous mutations, 484 mutations in the non-coding regions, 142 non-coding deletions, 100 in-frame deletions, 66 non-coding insertions, 36 stop-gained variants, 11 frameshift deletions and two in-frame insertions. The most common variants were the synonymous 3037C > T (6334 samples), P4715L in the open reading frame 1ab (6319 samples) and D614G in the spike protein (6294 samples). We identified six major clades, (that is, basal, D614G, L84S, L3606F, D448del and G392D) and 14 subclades. Regarding the base changes, the C > T mutation was the most common with 1670 distinct variants. CONCLUSION: We found that several variants of the SARS-CoV-2 genome exist and that the D614G clade has become the most common variant since December 2019. The evolutionary analysis indicated structured transmission, with the possibility of multiple introductions into the population.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.