SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation Q677H


Basic Characteristics of Mutations
Mutation Site Q677H
Mutation Site Sentence Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B.1.525;Bluebird;B.1.1.7;B.1.351;P1
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 34607452
Title Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H
Author Zeng C,Evans JP,Faraone JN,Qu P,Zheng YM,Saif L,Oltz EM,Lozanski G,Gumina RJ,Liu SL
Journal mBio
Journal Info 2021 Oct 26;12(5):e0251021
Abstract The sensitivity of SARS-CoV-2 variants of concern (VOCs) to neutralizing antibodies has largely been studied in the context of key receptor binding domain (RBD) mutations, including E484K and N501Y. Little is known about the epistatic effects of combined SARS-CoV-2 spike mutations. We now investigate the neutralization sensitivity of variants containing the non-RBD mutation Q677H, including B.1.525 (Nigerian isolate) and Bluebird (U.S. isolate) variants. The effect on neutralization of Q677H was determined in the context of the RBD mutations and in the background of major VOCs, including B.1.1.7 (United Kingdom, Alpha), B.1.351 (South Africa, Beta), and P1-501Y-V3 (Brazil, Gamma). We demonstrate that the Q677H mutation increases viral infectivity and syncytium formation, as well as enhancing resistance to neutralization for VOCs, including B.1.1.7 and P1-501Y-V3. Our work highlights the importance of epistatic interactions between SARS-CoV-2 spike mutations and the continued need to monitor Q677H-bearing VOCs. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, is rapidly evolving to be more transmissible and to evade acquired immunity. To date, most investigations of SARS-CoV-2 variants have focused on RBD mutations. However, the impact of non-RBD mutations and their synergy with studied RBD mutations are poorly understood. Here, we examine the role of the non-RBD Q677H mutation arising in many SARS-CoV-2 lineages, including VOCs. We demonstrate that the Q677H mutation enhances viral infectivity and confers neutralizing antibody resistance, particularly in the background of other SARS-CoV-2 VOCs.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.