IV Mutation Detail Information

Virus Mutation IV Mutation R141G


Basic Characteristics of Mutations
Mutation Site R141G
Mutation Site Sentence R141G, D197 N, and R203K were identified as affecting the antigenicity of IBV.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA
Standardized Encoding Gene HA
Genotype/Subtype B/Victoria
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza B    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 39233140
Title Antigenic analysis of the influenza B virus hemagglutinin protein
Author Zhang M,Yang C,Wu X,Wang Y,Wang L,Cui Q,Tong J,An Y,Cai M,Cheng S,Jiang Q,Wang Y,Zhao C,Wang Y,Huang W
Journal Virologica Sinica
Journal Info 2025 Feb;40(1):80-91
Abstract Influenza B viruses (IBVs) primarily infect humans and are a common cause of respiratory infections in humans. Here, to systematically analyze the antigenicity of the IBVs Hemagglutinin (HA) protein, 31 B/Victoria and 19 B/Yamagata representative circulating strains were selected from Global Initiative of Sharing All Influenza Data (GISAID), and pseudotyped viruses were constructed with the vesicular stomatitis virus system. Guinea pigs were immunized with three doses of vaccines (one dose of DNA vaccines following two doses of pseudotyped virus vaccines) of the seven IBV vaccine strains, and neutralizing antibodies against the pseudotyped viruses were tested. By comparing differences between various vaccine strains, we constructed several pseudotyped viruses that contained various mutations based on vaccine strain BV-21. The vaccine strains showed good neutralization levels against the epidemic virus strains of the same year, with neutralization titers ranging from 370 to 840, while the level of neutralization against viruses prevalent in previous years decreased 1-10-fold. Each of the high-frequency epidemic strains of B/Victoria and B/Yamagata not only induced high neutralizing titers, but also had broadly neutralizing effects against virus strains of different years, with neutralizing titers ranging from 1000 to 7200. R141G, D197 N, and R203K were identified as affecting the antigenicity of IBV. These mutation sites provide valuable references for the selection and design of a universal IBV vaccine strain in the future.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.