|
Basic Characteristics of Mutations
|
|
Mutation Site
|
R150G |
|
Mutation Site Sentence
|
Among them, the R154G mutation of HBc was the most effective in decreasing the cell binding ability to all three cell types, while its potency was fairly close to those of R150G, R151G and R152G. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
C |
|
Standardized Encoding Gene
|
C
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Hepatitis B Virus Infection
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
25890025
|
|
Title
|
Mutation of arginine residues to avoid non-specific cellular uptakes for hepatitis B virus core particles
|
|
Author
|
Bin Mohamed Suffian IF,Nishimura Y,Morita K,Nakamura-Tsuruta S,Al-Jamal KT,Ishii J,Ogino C,Kondo A
|
|
Journal
|
Journal of nanobiotechnology
|
|
Journal Info
|
2015 Feb 13;13:15
|
|
Abstract
|
BACKGROUND: The hepatitis B virus core (HBc) particle is known as a promising new carrier for the delivery of drugs and nucleic acids. However, since the arginine-rich domain that is located in the C-terminal region of the HBc monomer binds to the heparan sulphate proteoglycan on the cell surface due to its positive charge, HBc particles are introduced non-specifically into a wide range of cells. To avoid non-specific cellular uptake with the intent to control the ability of cell targeting, we individually replaced the respective arginine (R) residues of the arginine-rich domain located in amino acid positions 150-159 in glycine (G) residues. RESULTS: The mutated HBc particles in which R154 was replaced with glycine (G) residue (R154G) showed a drastic decrease in the ability to bind to the heparan sulphate proteoglycan and to avoid non-specific cellular uptake by several types of cancer cells. CONCLUSIONS: Because this mutant particle retains most of its C-terminal arginine-rich residues, it would be useful in the targeting of specificity-altered HBc particles in the delivery of nucleic acids.
|
|
Sequence Data
|
-
|