IV Mutation Detail Information

Virus Mutation IV Mutation R185K


Basic Characteristics of Mutations
Mutation Site R185K
Mutation Site Sentence Specifically, we found that an arginine-to-lysine substitution at position 185 of an H5N1 virus PA protein significantly affected that virus's virulence and pathogenicity in mice.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PA
Standardized Encoding Gene PA
Genotype/Subtype H5N1
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 25231317
Title Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals
Author Fan S,Hatta M,Kim JH,Le MQ,Neumann G,Kawaoka Y
Journal Journal of virology
Journal Info 2014 Dec;88(23):13737-46
Abstract The influenza viral polymerase complex affects host tropism and pathogenicity. In particular, several amino acids in the PB2 polymerase subunit are essential for the efficient replication of avian influenza viruses in mammals. The PA polymerase subunit also contributes to host range and pathogenicity. Here, we report that the PA proteins of several highly pathogenic avian H5N1 viruses have attenuating properties in mammalian cells and that the attenuating phenotype is conferred by strain-specific amino acid changes. Specifically, lysine at position 185 of A/duck/Vietnam/TY165/2010 (TY165; H5N1) PA induced strongly attenuating effects in vitro and in vivo. More importantly, the introduction of the arginine residue commonly found at this position in PA significantly increased the viral polymerase activity of TY165 in mammalian cells and its virulence and pathogenicity in mice. These findings demonstrate that the PA protein plays an important role in influenza virulence and pathogenicity. IMPORTANCE: Highly pathogenic influenza viruses of the H5N1 subtype cause severe respiratory infections in humans, which have resulted in death in nearly two-thirds of the patients with laboratory-confirmed cases. We found that the viral PA polymerase subunit of several H5N1 viruses possesses amino acid changes that attenuate virus replication in mammalian cells (yet the H5N1 viruses possessing these mutations are highly pathogenic in mice). Specifically, we found that an arginine-to-lysine substitution at position 185 of an H5N1 virus PA protein significantly affected that virus's virulence and pathogenicity in mice. The PA protein thus plays a role in the pathogenicity of highly pathogenic H5N1 influenza viruses.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.