EBOV Mutation Detail Information

Virus Mutation EBOV Mutation R26A


Basic Characteristics of Mutations
Mutation Site R26A
Mutation Site Sentence A mutant of VP3029S was constructed by replacing arginine 26 with alanine (VP3026A29S) (Fig. 6A), with the expectation that VP3026A29S would not be phosphorylated by kinases that recognize the RxxS motif as a substrate.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region VP30
Standardized Encoding Gene VP30
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene SRPK1   
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32098814
Title Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription
Author Takamatsu Y,Krahling V,Kolesnikova L,Halwe S,Lier C,Baumeister S,Noda T,Biedenkopf N,Becker S
Journal mBio
Journal Info 2020 Feb 25;11(1):e02565-19
Abstract Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R(26)xxS(29) motif. Interaction with VP30 via the R(26)xxS(29) motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation.IMPORTANCE The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.