MARV Mutation Detail Information

Virus Mutation MARV Mutation R271A


Basic Characteristics of Mutations
Mutation Site R271A
Mutation Site Sentence Compared with wild type VP35, the studied mutants F228A, R271A, and K298A have obviously reduced binding free energies with dsRNA reflecting in the reduction of polar or nonpolar interactions.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region VP35
Standardized Encoding Gene VP35  
Genotype/Subtype -
Viral Reference 4GHA
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24459115
Title Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by molecular dynamics simulations and free energy calculations
Author Xue Q,Zheng QC,Zhang JL,Cui YL,Zhang HX
Journal Biopolymers
Journal Info 2014 Aug;101(8):849-60
Abstract Filoviruses often cause terrible infectious disease which has not been successfully dealt with pharmacologically. All filoviruses encode a unique protein termed VP35 which can mask doubled-stranded RNA to deactivate interferon. The interface of VP35-dsRNA would be a feasible target for structure-based antiviral agent design. To explore the essence of VP35-dsRNA interaction, molecular dynamics simulation combined with MM-GBSA calculations were performed on Marburg virus VP35-dsRNA complex and several mutational complexes. The energetic analysis indicates that nonpolar interactions provide the main driving force for the binding process. Although the intermolecular electrostatic interactions play important roles in VP35-dsRNA interaction, the whole polar interactions are unfavorable for binding which result in a low binding affinity. Compared with wild type VP35, the studied mutants F228A, R271A, and K298A have obviously reduced binding free energies with dsRNA reflecting in the reduction of polar or nonpolar interactions. The results also indicate that the loss of binding affinity for one dsRNA strand would abolish the total binding affinity. Three important residues Arg271, Arg294, and Lys298 which makes the largest contribution for binding in VP35 lose their binding affinity significantly in mutants. The uncovering of VP35-dsRNA recognition mechanism will provide some insights for development of antiviral drug.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.