RABV Mutation Detail Information

Virus Mutation RABV Mutation R333E


Basic Characteristics of Mutations
Mutation Site R333E
Mutation Site Sentence Similar to ERA-G333Glu, which is attenuated by an Arg-to-Glu mutation at G333, ERA-G333Leu did not cause obvious clinical signs in 6-week-old mice after intracerebral inoculation.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region G
Standardized Encoding Gene RABVgp4  
Genotype/Subtype -
Viral Reference AB781935.1
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 34092430
Title Safety enhancement of a genetically modified live rabies vaccine strain by introducing an attenuating Leu residue at position 333 in the glycoprotein
Author Ito N,Okamoto T,Sasaki M,Miyamoto S,Takahashi T,Izumi F,Inukai M,Jarusombuti S,Okada K,Nakagawa K,Fujii Y,Nishiyama S,Masatani T,Sawa H,Sugiyama M
Journal Vaccine
Journal Info 2021 Jun 23;39(28):3777-3784
Abstract To improve the safety of genetically modified live rabies vaccine strains, most studies have utilized an attenuating Arg-to-Glu mutation at position 333 in the glycoprotein (G333), which is responsible for attenuation of the live vaccine strain SAG2. The Glu residue requires two nucleotide substitutions to revert to pathogenic Arg, thus significantly lowering the probability of pathogenic reversion caused by the Glu-to-Arg mutation at G333. However, only one nucleotide substitution is sufficient to convert the Glu residue to another pathogenic residue, Lys, and thereby to cause pathogenic reversion. This indicates a potential safety problem of SAG2 and the live vaccine candidates attenuated by Glu at G333. In this study, aiming to solve this problem, we examined the utility of a Leu residue, which requires two nucleotide substitutions to be both Arg and Lys, as an attenuating mutation at G333. Using a reverse genetics system of the live vaccine strain ERA, we generated ERA-G333Leu by introducing an Arg-to-Leu mutation at G333. Similar to ERA-G333Glu, which is attenuated by an Arg-to-Glu mutation at G333, ERA-G333Leu did not cause obvious clinical signs in 6-week-old mice after intracerebral inoculation. Importantly, after 10 passages in suckling mouse brains, ERA-G333Glu acquired a pathogenic Lys or Arg at G333 and a high level of lethality in mice, whereas ERA-G333Leu retained the attenuating Leu at G333 and only showed a modest level of virulence probably caused by a mutation at G194. In addition, ERA-G333Leu and ERA-G333Glu induced neutralizing antibody response and protective immunity in mice with similar efficiencies. The results demonstrate that, compared to ERA-G333Glu, ERA-G333Leu is more stably attenuated, also indicating the high utility of a Leu residue as an attenuating mutation at G333 in the development of live rabies vaccine strains with a high level of safety.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.