IV Mutation Detail Information

Virus Mutation IV Mutation R45H


Basic Characteristics of Mutations
Mutation Site R45H
Mutation Site Sentence This approach not only identified M2 mutations around the drug-binding site, including the pore-lining residues (V27A, V27F, N31S, and G34E) and an interhelical residue (I32N), but also a new allosteric mutation (R45H), in addition to L46P previously identified, located at the C-terminus of M2 that is more than 10 A away from the drug-binding site.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region M2
Standardized Encoding Gene M
Genotype/Subtype H3N2
Viral Reference A/Udorn/1972
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment M2-S31N channel blockers
Location -
Literature Information
PMID 32832869
Title Investigation of the Drug Resistance Mechanism of M2-S31N Channel Blockers through Biomolecular Simulations and Viral Passage Experiments
Author Musharrafieh R,Lagarias P,Ma C,Hau R,Romano A,Lambrinidis G,Kolocouris A,Wang J
Journal ACS pharmacology & translational science
Journal Info 2020 Mar 31;3(4):666-675
Abstract Recent efforts in drug development against influenza A virus (IAV) M2 proton channel S31N mutant resulted in conjugates of amantadine linked with aryl head heterocycles. To understand the mechanism of drug resistance, we chose a representative M2-S31N inhibitor, compound 3, as a chemical probe to identify resistant mutants. To increase the possibility of identifying novel resistant mutants, serial viral passage experiments were performed with multiple strains of H1N1 and H3N2 viruses in different cell lines. This approach not only identified M2 mutations around the drug-binding site, including the pore-lining residues (V27A, V27F, N31S, and G34E) and an interhelical residue (I32N), but also a new allosteric mutation (R45H), in addition to L46P previously identified, located at the C-terminus of M2 that is more than 10 A away from the drug-binding site. The effects of each mutation were next investigated using electrophysiology, recombinant viruses, and molecular dynamics (MD) simulations. The reduced sensitivity in channel blockage correlated with increased drug resistance in antiviral assays using recombinant viruses. The MD simulations show that the V27A, V27F, G34E, and R45H mutations increase the diameter and hydration state of the pore in complex with compound 3. The Molecular Mechanics Generalized Born (MM-GBSA) calculations result in more positive binding free energies for the complexes of resistant M2 (V27A, V27F, G34E, R45H) with compound 3 compared to the stable complexes (S31N and I32N). Overall, this is the first systematic study of the drug resistance mechanism of M2-S31N channel blockers using multiple viruses in different cell lines.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.